

Supplement of

Determining the ultraviolet radiation dose experienced by aerosols using ultraviolet-sensitive dyes

Qingqing Fu and Frank Einar Kruis

Correspondence to: Frank Einar Kruis (einar.kruis@uni-due.de)

The copyright of individual parts of the supplement might differ from the article licence.

S1. Estimating the cutoff Stokes diameter of the designed impactor.

In an impactor, the parameter that governs collection efficiency is the Stokes number (Fuchs and Davies, 1989), which is defined as the ratio of the particle stopping distance at the average nozzle exit velocity U to the half the jet diameter D_j :

$$Stk = \frac{\tau U}{D_j/2} = \frac{\rho_p d_p^2 U C_c}{9\eta D_j}$$
(S1-1)

Where ρ_p = the particle density

 D_p = particle Stokes diameter

 C_c = Cunningham slip factor

U = mean velocity in the jet

 $\eta = \text{gas viscosity}$

 $D_j = jet diameter$

The cutoff diameter d_{50} corresponds to a single Stokes number Stk_{50} , which gives 50% collection efficiency. According to equation (S1-1), the cutoff diameter in terms of the values of Stk_{50} can be expressed as:

$$d_{50}\sqrt{C_C} = \left[\frac{9\eta D_j(Stk_{50})}{\rho_p U}\right]^{1/2}$$
(S1-2)

By writing the jet velocity U in equation S1-2 as the ration of the jet flow rate Q to the jet crosssectional area. For a round jet impactor ($Stk_{50} = 0.24$, when the ratio of the jet-to-plate distance to the jet diameter exceeds 1.0)(Hinds, 1999), the equation (S1-2) can also be expressed as:

$$d_{50}\sqrt{C_C} = \left[\frac{9\pi\eta D_j^{3}(Stk_{50})}{4\rho_p Q}\right]^{1/2}$$
(S1-3)

The Cunningham slip factor is a function of particle diameter. To simplify the calculation, we applied the count median stokes diameter d_{CMD} , which determined by the ELPI (electrostatic low-pressure impactor) to estimate the Cunningham slip factor using the following equation (S1-4):

$$C_C(p, d_{CMD}) = 1 + \frac{2\lambda_g(p)}{d_{CMD}} \left(A_1 + A_2 \cdot \exp\left(-A_3 \cdot \frac{d_{CMD}}{2\lambda_g(p)}\right)\right)$$
(S1-4)

Where A_1 , A_2 , A_3 are given by Rader (Rader, 1990) as $A_1 = 1.207$, $A_2 = 0.440$ and $A_3 = 0.78$. λ_g is the minimum free path length of gas molecules (nitrogen in this study) as function of impactor pressure p.

Particle density (DEHS)	ρ_p	912	kg∙m⁻³
Gas viscosity (N_2)	η	1.78E-05	Pa·s
Circular jet diameter	D_j	2.0E-03	m
Stokes number (circular jet)	Stk ₅₀	0.24	-
Impactor pressure	р	0.22	atm
Gas mean free path @1atm	λ_0	67.4	nm
Gas mean free path @impactor	λ_g	306.4	nm
Count median Stokes diameter (ELPI)	<i>d_{CMD}</i>	505	nm
Cunningham slip factor	$C_c(p, d_{CMD})$	2.75	-
Inlet flow rate q_1 (a) 1 atm	q ₁	0.78	L∙min ⁻¹
Inlet flow rate q_2 @1atm	\overline{q}_2	2.26	L∙min ⁻¹
Inlet flow rate q_3 @1atm	q 3	8.86	$L \cdot min^{-1}$
Jet flow rate Q_1	$\hat{\boldsymbol{Q}}_{I}$	3.55	L∙min ⁻¹
Jet flow rate Q_2	Q_2	10.27	$L \cdot min^{-1}$
Jet flow rate Q_3	\overline{Q}_3	40.27	L∙min ⁻¹
Cutoff diameter (a) inlet flow q_1	d50,1	1280	nm
Cutoff diameter \widehat{a} inlet flow q_2	d50,2	750	nm
Cutoff diameter (a) inlet flow q_3	d50,3	379	nm

Table S1 summarizes the parameters used to determine the cutoff diameter for the impactor used in this work.

Reference

Fuchs, N. A. and Davies, C. N.: The mechanics of aerosols, Rev. and enl. ed., Dover Publications, New York, 1989.

Hinds, W. C.: Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed., Wiley, New York, 1999.

Rader, D. J.: Momentum slip correction factor for small particles in nine common gases, Journal of Aerosol Science, 21, 161–168, https://doi.org/10.1016/0021-8502(90)90001-E, 1990.