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Abstract. Soot inception by acetylene pyrolysis at 1350–1800 K is investigated using reactive molecular dy-
namics. The composition and chemical structure of soot precursor molecules formed during inception are elu-
cidated. During soot inception, increasing the process temperature leads to faster depletion of C2H2 molecules
and faster formation of C2H3, C2H4, C2H6, CH4, and C2 with the concurrent appearance of H2 molecules. Small
molecules consisting of 1–5 C atoms (C1–C5) are formed due to reactive collisions and grow further to larger
hydrocarbon compounds consisting of 6–10 C atoms. At initial stages of inception, prior to the formation of in-
cipient soot, three-member rings are formed, which are associated with the formation of compounds with fewer
than 10 C atoms. Once incipient soot is formed, the number of C1–C10 compounds and the number of three-
member rings drop, while the number of five- and six-member rings increases, indicating that the formation of
larger rings is associated with the growth of soot clusters. The chemical structure of soot precursor molecules
obtained by bond order analysis reveals that molecules with up to 10 C atoms are either linear or branched
aliphatic compounds or may contain three-member rings fused with aliphatic components. Molecules with more
than 10 C atoms often exhibit structures composed of five- or six-member C rings, decorated by aliphatic com-
ponents. The identification of molecular precursors contributing to soot inception provides crucial insights into
soot formation mechanisms, pinpointing potential pathways of soot formation during combustion.

1 Introduction

Soot is formed during incomplete combustion or pyrolysis of
hydrocarbons (Michelsen et al., 2020) and exhibits adverse
effects on human health (Anenberg et al., 2012), leading to
respiratory diseases (Shiraiwa et al., 2017) and premature
deaths (Giannadaki et al., 2016). Soot is a large contributor to
global warming after CO2 (Bond et al., 2013), affecting local,
regional, and global climate (Ramanathan et al., 2001). For-
mation of soot is believed to take place by gas-phase conden-
sation or reaction of precursor molecules and polycyclic aro-
matic hydrocarbons (PAHs) (Johansson et al., 2018), leading
to incipient soot (inception) (Wang and Chung, 2019), which
grows further by condensation of gas-phase radicals on its

surface (surface growth) (Michelsen et al., 2020). These pri-
mary soot nanoparticles collide with each other, forming ag-
gregates that can break upon oxidation (Naseri et al., 2022).
Even though soot growth by coagulation is rather well under-
stood through advances in numerical modeling (Kazakov and
Frenklach, 1998; Maricq, 2007; Sun et al., 2021), simulations
(Kelesidis et al., 2017a, b; Kelesidis and Goudeli, 2021), and
measurements (Maricq, 2007; Rissler et al., 2013; Maricq,
2014), development of an accurate physical representation
of the early stages of soot formation, and particularly incep-
tion (Irimiea et al., 2019), possess significant challenges to
kinetic modeling of soot (Appel et al., 2000), as it requires
knowledge of the chemical reaction pathways from gaseous
species to soot clusters (Thomson, 2023). Thus, a more de-
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tailed molecular-level understanding of the species formed
during soot inception is essential for the accurate description
of those chemical reaction pathways and for the design of
selective, soot-free chemical processes.

Kinetic models (Frenklach and Wang, 1991, 1994) of-
ten assume that soot inception occurs through physical PAH
dimerization. This is in contrast to theoretical calculations
(Houston Miller et al., 1985; Miller, 1991; Schuetz and Fren-
klach, 2002), revealing much lower PAH concentrations than
those of small soot particles (Houston Miller et al., 1985)
with short lifetimes (< 75 ps) for PAH dimers smaller than
800 amu (Schuetz and Frenklach, 2002; Miller, 1991). Such
theoretical calculations are consistent with measurements
(Sabbah et al., 2010) of the kinetics of pyrene dimerization,
corroborating the finding that physical PAH dimerization
does not contribute significantly to soot inception. Recent re-
search on combustion has been focusing on chemical dimer-
ization of PAHs through the formation of covalent bonds
(Johansson et al., 2017), with experiments suggesting that
acetylene (C2H2) or vinyl (C2H3) addition via radical chain
reaction leads to molecular growth of PAHs via chemisorp-
tion (Johansson et al., 2018). Additionally, shock tube exper-
iments of C2H2 and C4H2 pyrolysis (Kiefer et al., 1992) and
ab initio simulations of C2H2 (Zádor et al., 2017) have shown
that pyrolysis of aliphatic hydrocarbons produces C2Hx rad-
icals/intermediates, such as acetylene/ethynyl (C2H2/C2H)
and ethylene/vinyl (C2H4/C2H3) (Tanzawa and Gardiner,
1980) at high concentrations, which either initiate or accel-
erate the formation of a wide variety of products includ-
ing cyclopentaring-fused PAHs (Shukla and Koshi, 2012).
Density functional theory calculations have shown that
acetylene–acetylene reaction via vinylidene formation leads
to methylene cyclopropene, a three-member ring structure
that is rapidly converted into aliphatic isomers (Zádor et
al., 2017), indicating a resonance-stabilized hydrocarbon
radical chain reaction pathway (Johansson et al., 2018).
These findings suggest that reactions of acetylene are in-
volved in nearly all hydrocarbon fuel pyrolysis processes
(Liu et al., 2021) and pure acetylene pyrolysis serves as the
basis for understanding pyrolysis of other hydrocarbons to
soot formation (Slavinskaya et al., 2019).

Reactive molecular dynamics (MD) simulations based
on the ReaxFF (reactive force field; Castro-Marcano et
al., 2012) provide insight into the reaction kinetics (Schmalz
et al., 2024) and dynamic formation of soot (Goudeli, 2019).
Schmalz et al. (2024) identified the reaction pathways to the
formation of benzene, predicted by ReaxFF pyrolysis of n-
heptane and iso-octane, revealing that > 90 % of ReaxFF-
obtained reactions were not considered in kinetic models
(Langer et al., 2023). Such reaction path identification analy-
sis, however, has only been limited to short simulation times
and 100 fuel molecules, as even such small pyrolysis sys-
tems yield a complex network of more than 10 000 reactions.
ReaxFF simulations have been used more commonly to in-
vestigate soot inception (Mao et al., 2017; Yuan et al., 2019;

Han et al., 2017) and growth (Yuan et al., 2019) using PAHs
as the starting nucleating species. These simulations (Mao
et al., 2017) revealed that above 2000 K, PAHs grow into
soot particles via chemical reactions, while below the boil-
ing/sublimation temperature of the nucleating PAHs, soot in-
ception occurs via physical PAH dimerization. The presence
of large PAHs (> 398 amu) facilitates physical inception of
smaller PAHs (< 202 amu) at low temperature (1000 K), but
such PAHs dissociate at high temperature (> 1600 K), where
soot clusters are formed by radical–radical reactions (Yuan
et al., 2019). Arvelos et al. (2019) further demonstrated that
at ∼ 2165 K, cyclohexanone undergoes molecular decompo-
sition, leading to ethene and ethenone formation, marking a
shift from stable product formation to radical-dominated pro-
cess. Above 1500 K, addition of C2H2 leads to formation of
bridges among PAHs and other unsaturated aliphatic hydro-
carbons that compose the soot clusters (Yuan et al., 2019).
Liu et al. (2020) expanded on this by investigating n-decane
pyrolysis by ReaxFF simulations above 2300 K, showing that
soot growth accelerates especially above 3000 K, where com-
plete soot particle development and graphitization occur.

At 3000 K, reactive collisions of a multicomponent fuel
revealed the formation of aliphatic polyyne-like chains that
cyclized to form large rings, while internal bridging be-
tween macrocyclic carbon atoms led to PAHs with aliphatic
side chains (Han et al., 2017). Also, PAH-like molecules
coalesce via a ring-closing mechanism, leading to conver-
sion of five- or seven-member rings to six-member ones
(graphitization) with three-member rings as intermediates
(Han et al., 2017). Similarly, Zhang et al. (2023) found
that at 3000 K, 2,5-dimethylfuran (DMF) pyrolysis promotes
rapid polycyclic aromatic hydrocarbon (PAH) growth, driven
by increased dehydrogenation and active site availability.
Sharma et al. (2021) observed that at low temperatures
(< 1200 K), soot nanoparticles obtained by C2H2 pyrolysis
are more prone to coalescence than at higher temperature,
consistent with PAH-based clusters (Hou et al., 2022) due
to low aromatic-to-aliphatic and C/H ratios. Most of these
reactive MD studies of soot or carbon black formation, how-
ever, are limited to high-temperature regions (> 1800 K) and
usually consider common PAH molecules as precursors to
soot formation (Zhao et al., 2020). So, the detailed molecu-
lar structures of soot precursors contributing to the chemical
pathway to soot formation have not been thoroughly inves-
tigated, particularly at lower temperatures more relevant to
combustion conditions.

Here, inception and growth of incipient soot are stud-
ied during pyrolysis using acetylene as initial fuel. This
study investigates the detailed chemical structure of a wide
range of soot precursors, providing a comprehensive anal-
ysis by accounting for detailed bond information obtained
from ReaxFF MD simulations during acetylene pyrolysis at
1350–1800 K. The temporal evolution of the concentration
of the most abundant species formed during inception is elu-
cidated along with the average C/H ratio of small (composed
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of fewer than 5 C atoms), intermediate (6–10 C atoms), and
large molecules (> 10 C atoms) until the formation of super
critical nuclei with up to 70 C atoms. The detailed chemical
structure of the soot precursors at different stages of soot in-
ception and surface growth is quantified based on bond order
analysis, and the effect of temperature on the concentration
and structure of these precursors is investigated.

2 Theory

2.1 Inception simulations

A total of 1000 acetylene (C2H2) molecules are randomly
distributed in a cubic simulation cell of 75.6 Å length with
periodic boundary conditions, using MAPS 4.3. The use of
1000 C2H2 molecules ensures sufficient statistical sampling
of the population of precursors formed during pyrolysis. The
simulation box size was chosen such that 1000 acetylene
molecules achieve a density of 0.1 g cm−3 within the simula-
tion domain. This density is consistent with that employed in
other ReaxFF studies (Sharma et al., 2021), ensuring that in-
cipient soot formation can occur within the timescale acces-
sible by reactive MD simulations for the temperature range
used in this study. Here, incipient soot refers to soot clusters
with Mw≥ 202 g mol−1 (Mukut et al., 2023), correspond-
ing to the molecular weight of pyrene (Dillstrom and Vi-
oli, 2017), which is one of the most commonly considered
seed molecules that initiate soot inception (Frenklach, 2002;
Mukut et al., 2023). Bond breakage and new bond forma-
tion upon molecular collisions are simulated by employ-
ing the reactive force field of Castro-Marcano et al. (2012)
for hydrocarbons, which has demonstrated consistency with
experimental observations (Rokstad et al., 2014; Agafonov
et al., 2015; Aghsaee et al., 2014) and theoretical models
(Gao and Tang, 2022; Saggese et al., 2014; Slavinskaya et
al., 2019; Liu et al., 2021), particularly in understanding
radical chain mechanisms in acetylene pyrolysis. The bond
lengths of the molecules are constantly adjusted based on
their changing local chemical environment (Chenoweth et
al., 2008). ReaxFF enables the simulation of chemically re-
active systems through the prediction of atomic connectiv-
ity through interatomic distances, angles, and torsion terms.
The total system energy is divided into various partial con-
tributions, including bond energy (Ebond), over-coordination
energy penalty (Eover), under-coordination stability (Eunder),
valence angle energy (Eval), lone pair energy (Elp), penalty
energy term (Epen), torsion angle energy (Eta), conjugation
effects to molecular energy (Econj), van der Waals energy
(EvdW), and Coulomb energy (ECoul):

Esystem = Ebond+Eover+Eunder+Eval+Elp+Epen

+Etors+Econj+EvdW+ECoul. (1)

The equations of motion are integrated using a velocity
Verlet algorithm (Swope et al., 1982) with a time step of

0.25 fs (Chenoweth et al., 2009), consistent with ReaxFF
MD simulations (Mao et al., 2017; Lümmen, 2010; Rom et
al., 2013) of hydrocarbon reactions for soot formation at low
temperature, using the Nosé–Hoover thermostat (Evans and
Holian, 1985), with a damping parameter of 10 fs. Acety-
lene pyrolysis simulations are carried out for 10 ns in the
NVT (constant number, volume, and temperature) ensem-
ble using LAMMPS (Plimpton, 1995) at 1350, 1500, 1650,
and 1800 K. The employed temperature range is consistent
with temperature measurements during pyrolysis of ethylene
(Dewa et al., 2016; Mei et al., 2019) and acetylene (Drakon
et al., 2021). The simulation results were reproduced with up
to three additional NVT inception simulations with different
initial C2H2 configurations at each temperature (see the Sup-
plement). The ReaxFF MD simulation details are listed in
Table 1.

2.2 Chemical structure of soot precursor molecules

The chemical structure of all species consisting of up to 70
C atoms formed during pyrolysis and their number concen-
tration are obtained as a function of time and are recorded
every 0.25 ns. The detailed structure of each individual
molecule is visualized using the Chemical Trajectory An-
alyzer (ChemTraYzer) analysis tool (Döntgen et al., 2015,
2018), which utilizes the bond order information and the
atom coordinates generated by ReaxFF simulations. The
individual molecules emerging at each time step are dis-
tinguished based on the atom connectivity data available
in the bond order files generated by ReaxFF simulations,
and their detailed chemical structure is visualized based on
the ReaxFF-obtained bond order information based on their
interatomic distances (Chenoweth et al., 2008). In Chem-
TraYzer, the bond orders are rounded to increments of 0.5
(i.e., 0.5, 1, 1.5, etc.) with those below 0.5 being disregarded,
as discussed in Krep et al. (2022). The bond information
is converted to simplified molecular-input line-entry system
(SMILES) codes through Open Babel (O’Boyle et al., 2011)
representing the detailed chemical structures of each of the
molecules, which are visualized with MolView (Bergwerf,
2015). The snapshots of the entire simulated system were vi-
sualized using visual MD (VMD; Humphrey et al., 1996).

2.3 Analysis of cyclic structures

The total number of three-, five-, and six-member rings
formed in the system is quantified at different time steps dur-
ing the pyrolysis simulations. A connectivity matrix is con-
structed utilizing the coordinates and bond order of all atoms
and their neighbors. When 3, 5, or 6 atoms are connected in
series in a closed loop, they correspond to three-, five-, and
six-member rings, respectively, and are distinguished from
non-cyclic structures.

Once the cyclic structures have been identified, the bonds
of each of their constituent pairs are categorized as single
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Table 1. MD simulation parameters.

MD integration time step 0.25 fs
Initial fuel (C2H2) density 0.1 g cm−3

Simulation cell dimensions 75.6× 75.6× 75.6 Å3

Pyrolysis temperature 1350–1800 K
Total duration of pyrolysis simulations 10 ns
Thermostat damping constant 10 fs

C–C bonds if the bond order is < 1.33 (Emri and Lente,
2004); double C–C bonds if the bond order values range
between 1.33 and 2.85 (Emri and Lente, 2004; Hermann
and Frenking, 2016); and triple C–C bonds if the bond or-
der is at least 2.86, corresponding to the triple C–C bond in
C2H2 (Hermann and Frenking, 2016). A bond order greater
than or equal to 1.33 (graphite) (Emri and Lente, 2004) in-
dicates the presence of a double bond for aromatic com-
pounds, and a bond order of∼ 1.92 (ethylene) indicates dou-
ble bonds in aliphatic compounds (Hermann and Frenking,
2016). The aromaticity of each of the ring structures is as-
sessed by counting the electrons in p orbitals that are in-
volved in double bonds or lone pairs and applying Hückel’s
rule (Solà, 2022). Due to shared electron distribution and
fractional bonds predicted by ReaxFF, along with the assign-
ment of bond orders in increments of 0.5 by ChemTraYzer,
some molecules might be visualized as having C atoms with
more than four bonds, which have been excluded from the
reported results. The four- and seven-member ring structures
are determined by MAFIA-MD (molecular arrangement and
fringe identification and analysis from molecular dynamics;
Mukut et al., 2022).

3 Results and discussion

3.1 Molecular properties of soot precursors

Figure 1 shows snapshots of the growth of carbonaceous
nanoparticles formed by acetylene pyrolysis at (a) 1350,
(b) 1500, (c) 1650, and (d) 1800 K at times t = 0.75, 2,
3.75, 5, 6, and 8 ns. All C–C bonds are represented by
black lines, and all H atoms are omitted for clarity. Initially
(t = 0.75 ns), at low temperatures (1350 and 1500 K), acety-
lene molecules hardly react with each other. At 1350 K, a
few linear molecules appear at 2 and 3.75 ns (Fig. 1a: red-
circled molecules) due to the reactive collisions of acety-
lene molecules, which grow into cyclic hydrocarbons at 5 ns
(Fig. 1a: green-circled molecules) and later (t = 6 ns) into the
incipient soot (Fig. 1a: blue-circled cluster). At 1500 K, lin-
earization is observed at 2 ns (Fig. 1b: red-circled molecules),
while cyclization takes place earlier than 1350 K, at 3.75 ns
(Fig. 1b: green-circled clusters). After cyclization, the chain
and cyclic molecules grow rapidly, forming a large incipi-
ent soot nanoparticle at 6 and 5 ns for 1350 and 1500 K, re-
spectively, by scavenging the surrounding reactive molecules

around the cluster (Fig. 1a and b: blue-circled clusters).
These clusters grow further by surface growth (8 ns for both
1350 and 1500 K) until most of the surrounding reactive
molecules are depleted.

At high temperature (T = 1650 and 1800 K), acetylene
molecules collide more vigorously with each other due to
their higher kinetic energy, increasing the probability of bond
breakage upon collision. So, linearization and cyclization
(Fig. 1c and d: red- and green-circled molecules) occur faster
(t = 0.75 ns) at 1650 and 1800 K than at lower temperatures
(Fig. 1a and b). Incipient soot forms rapidly within 2 ns
(Fig. 1c and d: blue-circled molecules at t = 2 ns) and grows
further by surface condensation for t ≥ 3.75 ns until the sur-
rounding molecules and radicals are consumed. Therefore,
higher temperature leads to faster hydrocarbon cyclization
and growth, consistent with diffused back-illumination ex-
tinction imaging measurements of pyrolytic decomposition
of n-dodecane (Skeen and Yasutomi, 2018), revealing a lin-
ear increase in the soot formation rate with temperature.

Figure 2 shows the temporal evolution of the molecu-
lar weight of the largest molecule or cluster formed during
acetylene pyrolysis at 1350 (black line), 1500 (blue line),
1650 (green line), and 1800 K (red line) for the simula-
tions shown in Fig. 1. Initially, only acetylene molecules
are present in the simulation domain corresponding to
26 g mol−1 at t = 0 ns at all temperatures. During acetylene
pyrolysis, inception takes place slowly by reactive collisions
of hydrocarbon molecules. The formation of incipient soot,
defined as soot clusters with molecular weight equal to or
greater than that of pyrene (Dillstrom and Violi, 2017), is
denoted by the horizontal line in Fig. 2, corresponding to
Mw= 202 g mol−1. The onset of surface growth as a func-
tion of temperature is shown in Fig. S1 in the Supplement.
In addition, upon the formation of a molecule with molecu-
lar weight of∼ 202 g mol−1, no dissociation of this molecule
is observed (as shown exemplarily for T = 1800 K, Fig. S2),
indicating the transition from gas to particle phase and the
onset of surface growth. This lack of dissociation for clusters
larger than∼ 202 g mol−1 is observed for all simulations and
temperatures. The inception step is slower at low temperature
due to low kinetic energy of the colliding reactive species.
For example, at 1350 K inception is completed within∼ 5 ns,
i.e., 5 times slower than inception at T ≥ 1650 K, which takes
place within ∼ 1 ns.
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Figure 1. Snapshots of the growth of carbonaceous species (hydrogen atoms are omitted) formed by acetylene pyrolysis at (a) 1350, (b) 1500,
(c) 1650, and (d) 1800 K at times t = 0.75, 2, 3.75, 5, 6, and 8 ns. Formation of linear-like (chain) molecules (red-circled molecules) is
observed early on, especially at high temperatures, followed by the formation of cyclic hydrocarbons (green-circled molecules). These linear
and cyclic molecules coalesce to form incipient soot (blue-circled clusters), which grows further by the surface condensation of small free
molecules or radicals.

Figure 3 shows the temporal evolution of the total num-
ber of (a) C2H2 molecules, as well as compounds containing
(b) 1–5 C atoms (C1–C5; excluding C2H2), (c) 6–10 C atoms
(C6–C10), and (d) > 10 C atoms (C10) present in the sim-
ulation cell, during C2H2 pyrolysis at 1350 (circles), 1500
(squares), 1650 (diamonds), and 1800 K (stars). The total
number of C1–C5 molecules (including C2H2) is shown in
Fig. S3. At T = 1350 K, the consumption of C2H2 is negli-
gible (< 10 %) up to 4.75 ns. Shortly thereafter, at t = 5.2 ns
(Fig. 3a: vertical black line), a sudden drop of 92.2 % in the
C2H2 concentration is observed, accompanied by an abrupt
increase in the number of other C1–C5 (Fig. 3b: circles) and
C6–C10 molecules (Fig. 3c: circles). At that time (t = 5.2 ns),
a C19H11 cluster is formed (Table S1, T = 1350 K: simula-
tion 1), with a molecular weight of 239 g mol−1 denoting the
onset of surface growth (vertical black line), as discussed in
Fig. 2.

The peak in the number of C6–C10 molecules (Fig. 3c) co-
incides with the increase in the number of C1–C5 molecules

other than C2H2 (Fig. 3b) and the depletion of nearly 90 %
of the C2H2 molecules (Fig. 3a). In fact, narrow peaks ap-
pear in the evolution of the number of C6–C10, indicating
their rapid, practically complete consumption shortly after
their formation. These intermediate-sized molecules (C6–
C10) contribute up to 2.5 % of all molecules at the surface
growth stage. In contrast, C1–C5 molecules excluding acety-
lene (Fig. 3b) are consumed at a slow rate, reaching a plateau
of about 250 molecules at longer times (t > 8 ns), totaling
70 %–75 % of all molecules, regardless of the temperature.
The faster consumption rate of the C6–C10 molecules could
be attributed to their larger projected area compared to C1–
C5 compounds, rendering them more likely to be scavenged
by the large incipient soot. For example, the collision fre-
quency function of a naphthalene molecule is approximately
1.6 times smaller than that of an acetylene molecule, based
on the kinetic theory of gases. It should be noted, however,
that the reactivity and chemical stability of each species vary
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Figure 2. Temporal evolution of the molecular weight of the largest
molecule formed during acetylene pyrolysis at 1350 (black line),
1500 (blue line), 1650 (green line), and 1800 K (red line) for the
simulations of Fig. 1. The formation of incipient soot is denoted
by the formation of soot clusters with Mw≥ 202 g mol−1 (hori-
zontal line), corresponding to the molecular weight of the pyrene
molecule.

depending on their size and chemical nature, which also af-
fects their consumption rate.

At the onset of surface growth (t = 5.2 ns at 1350 K,
Fig. 3a: vertical black line), the number concentration of
larger molecules, composed of more than 10 C atoms
(Fig. 3d: circles), also increases, reaching a maximum at
t = 5.25 ns. As the largest cluster in the simulation domain
(e.g., Fig. 1a: t = 6 ns) collides with the surrounding species,
it grows by scavenging other molecules with a large projected
area, resulting in a drop in the number of C6–C10 (Fig. 3c)
and >C10 molecules. In contrast to larger molecules con-
sisting of more than 6 C atoms, the concentration of C1–
C5 molecules (Fig. 3b: circles) decreases at a much slower
rate as the reactive collisions of such molecules with each
other and with the soot cluster become more scarce. In
fact, for t ≥ 6.5 ns, only one cluster with >C10 is present
(Fig. 3d), corresponding to the incipient soot particle (com-
posed of 1134 C atoms).

At higher temperature (T > 1350 K), even though soot
precursor species form earlier than at 1350 K, a similar
growth mechanism is observed. Specifically at T = 1500 K,
the onset of surface growth takes place at 3.65 ns, corre-
sponding to acetylene reduction of 87.6 % (Fig. 3a: ver-
tical blue line) and to a peak in the number of C1–C5
(Fig. 3b) and C6–C10 molecules (Fig. 3c). This delay in the
peak concentration of the C1–C10 molecules at low tem-
perature is associated with the slower reaction kinetics of
acetylene molecules, as indicated by their delayed depletion
(Fig. 3a) compared to higher temperature. For t < 3.65 ns,
small (<C10) molecules are mostly formed and only few
(fewer than 10; Fig. 3d) larger molecules are present. At
even higher temperature (T ≥ 1650 K), inception takes place

Figure 3. Temporal evolution of the total number of (a) acety-
lene (C2H2), (b) C1–C5 (excluding C2H2), (c) C6–C10, and
(d) >C10 molecules during acetylene pyrolysis at 1350 (circles),
1500 (squares), 1650 (diamonds), and 1800 K (stars). The vertical
lines at 0.8 ns for 1650 and 1800 K, at 3.65 ns for 1500 K, and at
5.2 ns for 1350 K indicate the onset of surface growth for the re-
spective temperatures.

at a much shorter timescale as the onset of surface growth
is observed at t = 0.8 ns (Fig. 3a: vertical purple line), with
a simultaneous increase in C1−10 molecules (Fig. 3b and c),
which grow further after 0.2 ns, indicated by the peak of the
>C10 molecules (Fig. 3d) at t = 1 ns.

At sufficiently long times, soot inception and surface con-
densation are practically completed as the number concen-
tration of all species in the simulation domain is significantly
reduced, reaching steady state. At this stage, 16 %–20 %
of all the molecules are C2H2, 77.5 %–81.5 % are C1–C5
(excluding C2H2), and 2.5 % are C6–C10 molecules. These
MD results have been reproduced with up to four simula-
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tions at each temperature using different initial configura-
tions of acetylene molecules (Figs. S4–S9, simulations S1–
S4), confirming the trends shown in Fig. 3. At 1350 K, a
large variation is observed in the C2H2 evolution. The C2H2
molecules are practically consumed within 3.5 to 8 ns, fol-
lowing a similar trend in all four simulations (Fig. S4) and re-
sulting in qualitatively similar temporal evolution of the C1–
C5 molecules (excluding C2H2) (Fig. S7), C6–C10 (Fig. S8),
and >C10 molecules (Fig. S9). The temporal change of
the amount of C1–C5, C6–C10, and >C10 species is also
shown in terms of molecular percentage by weight (wt %)
in Fig. S10.

Figure 4 shows the temporal evolution of the average
C/H ratio of (a) C1–C5 molecules including C2H2, (b) C1–
C5 molecules excluding C2H2, (c) C6–C10, and (d) >C10
molecules for the acetylene pyrolysis simulations of Fig. 1, at
1350 (circles), 1500 (squares), 1650 (diamonds), and 1800 K
(stars). During inception at T = 1350 K (t ≤ 4.5 ns), the av-
erage C/H ratio of all C1–C5 molecules is 1 (Fig. 4a) as
most (> 95 %) of the reactive species is acetylene (Fig. 3a),
while the remaining 5 % exhibits a slightly higher C/H ra-
tio of up to 1.3 (Fig. 4b). After the onset of surface growth
(i.e., t > 5.2 ns at 1350 K), the average C/H ratio of C1–
C5 molecules slightly decreases, attaining a value of 0.53,
including (Fig. 4a) and excluding (Fig. 4b) C2H2, as most
acetylene has been depleted (Fig. 3a). As larger molecules
start to form (Fig. 3c and d), the C/H ratio of C6–C10 and
>C10 species increases, reaching a maximum shortly af-
ter surface growth starts (t ∼= 5–6 ns). This attainment of the
maximum C/H ratio of intermediate-sized or large molecules
coincides with the maximum number concentration of those
compounds throughout soot formation. For t ≥ 6.5 ns, where
steady >C10 concentration is reached (Fig. 3d), the average
C/H ratio of the >C10 molecules is approaching 2 (Fig. 4d).
During soot surface growth (t ≥ 5.2 ns), the C/H ratio of C1–
C5 molecules drops, reaching a plateau at 0.57 (Fig. 4a) or at
0.41 without accounting for C2H2 (Fig. 4b). The C/H ra-
tio of C6–C10 molecules decreases once the incipient soot is
formed (Fig. 4c, t ≥ 6.5 ns) until the attainment of a plateau
of about 1. The C6–C10 molecules show a higher C/H ratio
than that of the C1–C5 molecules during inception. The peak
in the C/H ratio of the C6–C10 molecules coincides with the
cluster formation (i.e., when molecular weight of the incip-
ient soot is ∼ 202 g mol−1), indicating that these molecules
act as nuclei for the formation of the soot cluster.

Increasing the process temperature leads to faster forma-
tion of C1–C5 molecules, which eventually reach the same
C/H ratio of 0.41 during soot surface growth (Fig. 4b). This
increase in temperature, however, leads to faster attainment
of this asymptotic C/H ratio of small (<C5) molecules.
Also, higher temperature (> 1650 K) leads to faster forma-
tion of C2H4, CH4, C2H3, and C2H6 (please see also Fig. 5b–
e), which reduce the average C/H ratio of C1–C5 molecules
until a plateau is reached around 3–4 ns (Fig. 4b). Since
no stable >C5 molecules are formed before the incipient

Figure 4. Temporal evolution of the average C/H ratio of (a) C1–
C5 molecules including C2H2, (b) C1–C5 molecules excluding
C2H2, (c) C6–C10, and (d) >C10 molecules for the acetylene py-
rolysis simulations of Fig. 1, at 1350 (circles), 1500 (squares), 1650
(diamonds), and 1800 K (stars).

soot formation (Figs. 1, 2, and 3c and d), the C/H ra-
tio for C6–C10 molecules is mainly observed post-inception
for all temperatures, and only when >C5 molecules are
formed does the C/H ratio slightly fluctuate as the cluster
grows (Fig. 4c and d). Additionally, the >C10 (Fig. 4d) and
C6–C10 (Fig. 4c) molecules are more carbonized than their
smaller counterparts (C1–C5 molecules), indicated by their
higher C/H ratio. The C/H ratio of the incipient soot during
acetylene pyrolysis (Fig. 4d) is lower at higher temperature
(≥ 1650 K) due to dehydrogenation, consistent with experi-
ments with other fuel flames (e.g., methane, Alfè et al., 2009,
2010; Russo et al., 2015, 2013; ethylene, Alfè et al., 2009;
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Russo et al., 2015; Russo et al., 2013). The C/H evolution
has been reproduced for up to four MD simulations with var-
ious initial configurations (Figs. S11–S14), confirming the
trends shown in Fig. 4.

The C/H ratio of the MD-obtained non-cyclic (Fig. S15:
diamonds) and cyclic soot precursors (Fig. S15: circles) con-
sisting of 11–70 C atoms formed throughout the nucleation
and surface growth stages (t = 0–10 ns) is compared to that
of soot precursors obtained during ethylene combustion by
high-resolution atomic force microscopy (AFM) measure-
ments (Commodo et al., 2019; Lieske et al., 2023) (Fig. S15:
filled symbols) at 1350–1800 K. Most of the soot precursor
molecules composed of up to 25 C atoms exhibit a C/H ra-
tio in the range of 1–2, consistent with the C/H ratio of the
molecules observed by AFM (Commodo et al., 2019; Lieske
et al., 2023), which range between 1 and 2.5. Larger MD-
obtained clusters attain a C/H ratio of 1–1.5, contrary to ex-
periments revealing higher C/H ratios of ∼ 2. This can be
attributed to the larger fraction of aromatic rings observed in
the soot clusters sampled from premixed ethylene (C2H4)/air
flames (Commodo et al., 2019; Schulz et al., 2019), along
with the fact that side-aliphatic chains had been excluded
from the calculation of the C/H ratio of these AFM-obtained
soot clusters (Commodo et al., 2019). This difference be-
tween AFM measurements (Commodo et al., 2019; Lieske
et al., 2023) and MD simulations could also arise from the
presence of O2 in experiments that might have led to the for-
mation of different soot precursors than those obtained here
by pyrolysis alone. Aliphatic moieties, however, have been
observed in AFM mainly in the form of methyl groups or
larger alkyl chains (Schulz et al., 2019). Additionally, the
characteristics of soot nanoparticles obtained at the end of
these simulations have been rigorously validated in Mukut
et al. (2024), further confirming the validity of the present
simulations.

Figure 5 shows the temporal evolution of the number
of (a) C2 and C, (b) C2H4 and C4H2, (c) CH4 and CH3,
(d) C2H3 and C2H, and (e) C2H6 and C2H5, correspond-
ing to the 10 most abundant organic species, and (f) H2 and
H formed by acetylene pyrolysis during inception and sur-
face growth at 1350 (black lines), 1500 (blue lines), 1650
(green lines), and 1800 K (red lines). The concentration of
all molecules increases, while C2H2 is rapidly consumed
(Fig. 3a). At the onset of surface growth, C2H3 exhibits the
highest concentration (Fig. 5d, solid line), suggesting that the
intermediates formed by reactive collisions of acetylene are
eventually converted to vinyl radicals, as proposed in the hy-
drogen abstraction vinyl acetylene addition (HAVA) mecha-
nism (Shukla and Koshi, 2012).

For example, at T = 1350 K, the C2H3 (Fig. 5d) and C2H4
exhibit a peak (Fig. 5b) at t = 5.25 ns, which corresponds
to the time step right after the onset of the surface growth
(Fig. 3). There (t = 5.25 ns), only a small amount of C2H
(Fig. 5d), C4H2 (Fig. 5b), C2, C (Fig. 5a), and H2 (Fig. 5f) is
produced, followed by an increase in CH3 and CH4 (Fig. 5c)

at t ≥ 5.5 ns, indicating that the primary products during
acetylene pyrolysis (such as C2H3, C2H4) also contribute
to the formation of hydrocarbon molecules containing > 5
C. The role of C2H3 has also been highlighted in kinetic
mechanisms as a key contributing molecule to the forma-
tion of cyclopentadiene through its addition to C4H6, which
competes with benzene formation pathways and influences
the composition and growth of soot particles (Faravelli et
al., 1998). The amount of C2H4 (Fig. 5b: solid lines), CH4
(Fig. 5c: solid lines), C2H6 (Fig. 5e: solid lines), and H2
(Fig. 5f: solid lines) hardly changes at longer times, after
C2H2 has practically been depleted, indicating that these
species do not contribute to the growth of the soot cluster.
The abrupt decrease in C2H4 (Fig. 5b: solid lines), C2H3
(Fig. 5d: solid lines), and C2H concentration (Fig. 5b: bro-
ken lines) also hints that these species contribute towards the
growth of incipient soot. It should be noted that the contri-
bution of polyynes, such as C4H2 and C2H, has also been
recognized in accelerating polymerization reactions that lead
to soot nucleation (Indarto, 2008). The process temperature
hardly affects the concentration of the organic species, but
higher temperatures lead to faster reactions, as discussed in
Fig. 3. It is worth noting that at low temperature (T = 1350–
1650 K), dehydrogenation only takes place right after the on-
set of surface growth, and the H2 concentration remains con-
stant at longer times. At T = 1800 K, however, even though
dehydrogenation starts at the onset of surface growth, coin-
ciding with the formation of C6–C10 molecules (Fig. 3c), it
continues throughout surface growth of the incipient soot as
H2 increases for t ≥ 4 ns (Fig. 5f: T = 1800 K, solid line).
The large H2 concentrations generated by pyrolysis at high
T are consistent with the H2 synthesis in plasma reactors for
carbon black production (Fulcheri and Schwob, 1995).

Figure 6 shows the temporal evolution of the number of
(a) three-, (b) five-, and (c) six-member C rings across all
molecules during acetylene pyrolysis at 1350 (circles), 1500
(squares), 1650 (diamonds), and 1800 K (stars), with four-
and seven-member rings shown in Fig. S16. The appearance
of the three-member rings occurs at t = 3.75 ns at 1350 K af-
ter C2H2 has practically been depleted (Fig. 3a) and coin-
cides with the formation of C6–C10 molecules (Fig. 3c), indi-
cating the presence of three-member rings in molecules con-
sisting of 6–10 C atoms. The total number of three-member
rings decreases when small molecules are consumed and the
incipient soot grows, revealing that three-member rings are
thermodynamically less stable (Kim and Ihee, 2012; Fan-
tuzzi et al., 2013) compared to the acyclic small molecules
(C1–C5) and dissociate when surface growth prevails. The
five- and six-member rings are formed simultaneously dur-
ing pyrolysis. Early on, before the onset of surface growth,
no five-, six-, and seven-member rings are observed (Figs. 6
and S16), indicating that these rings mainly exist in the incip-
ient soot. For example, at T = 1350 K (Fig. 6c), six-member
rings start to form at t = 6 ns after more than 60 % of the
C6–C10 molecules have been depleted (Fig. 3c: t = 6 ns). At
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Figure 5. Temporal evolution of the number of (a) C2 and C, (b) C2H4 and C4H2, (c) CH4 and CH3, (d) C2H3 and C2H, (e) C2H6 and
C2H5, and (f) H2 and H corresponding to the most abundant species formed by acetylene pyrolysis during inception (t = 0–10 ns) at 1350
(black lines), 1500 (blue lines), 1650 (green lines), and 1800 K (red lines).

longer times, where incipient soot cluster growth steadies,
the concentration of five- and six-member rings reaches a
plateau, corroborating the fact that these rings originate from
the formation of the incipient soot.

The formation of five- and six-member rings is tracked ex-
emplarily in Fig. S17 for different molecules at T = 1500 K.
The initial small hydrocarbons polymerize by reactive colli-
sions, forming extended aliphatic chains consisting of more
than 6 C atoms. These large aliphatic chains undergo molec-
ular rearrangement and cyclization, resulting in the forma-
tion of five-member and six-member aromatic rings (e.g.,
Fig. S17a: t = 7.55 and 7.75 ns). These rings dynamically
form and may dissociate; for instance, the rings highlighted
in Fig. S17a persist for approximately 0.25 ns before dis-
sociating due to collisions with other molecules. Concur-
rently, other large aliphatic molecules coalesce with existing
rings, stabilizing the incipient soot nanoparticle (Fig. S17b:
t = 9.2). This leads to further ring formation through molec-
ular rearrangement, rather than through PAH dimerization,
thereby underscoring the complex and transient nature of
soot precursor dynamics at high temperature. The present
ReaxFF simulations can capture the formation of benzene,
a major intermediate of soot formation (Fig. S17b, bottom),
consistent with reaction mechanisms of acetylene pyrolysis
(Saggese et al., 2014).

At the onset of surface growth, the five-member aro-
matic rings are approximately 13 % for 1350 K and 15 %

for 1500, 1650 and 1800 K of the total number (aromatic
and aliphatic) of the five-member rings formed (Fig. S18a).
At longer times, the fraction of five-member aromatic rings
drops down to 3 % for 1350 K and 2 % for 1500, 1650 and
1800 K (Fig. S18a), while the fraction of six-member aro-
matic rings is 6 % for 1350 and 1650 K and 5 % for 1500 and
1800 K (Fig. S18b). As time proceeds, the fraction of six-
member aromatic rings rises to 12 % and 10 % for 1350 and
1500 K and 11 % for both 1650 and 1800 K, consistent with
recent MD results (Han et al., 2017). In addition, the total
number of six-member rings increases with increasing tem-
perature (Fig. 6c), and cyclization within the incipient soot
takes place.

This progression of ring formation is reflected in the size
(Fig. S19) and molecular weight distributions (Fig. S20)
of the population of all species during soot inception. At
1350 K for t ≤ 3.75 ns and at 1500 K for t ≤ 2 ns, more than
95 % of molecules are acetylene, so there is hardly any
change in the molecular weight distribution, and only a
few of them have molecular weights up to 200 g mol−1, in
line with Figs. 1 and 3a. At longer times, i.e., at 1350 K
and t ≥ 5 ns (Figs. S19a and S20a) and at 1500 K and
t ≥ 3.75 ns (Figs. S19b and S20b), the distributions shift to
larger cluster sizes and molecular weights, with the forma-
tion of molecules, radicals, and even a nascent soot clus-
ter having molecular weight between 200 and 1000 g mol−1.
The peak corresponding to the largest cluster shifts to-
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Figure 6. Temporal evolution of the number of (a) three-, (b) five-,
and (c) six-member C rings during acetylene pyrolysis at 1350 (cir-
cles), 1500 (squares), 1650 (diamonds), and 1800 K (stars). The
appearance of the three-member rings occurs after C2H2 has been
depleted. The total number of three-member rings decreases when
small molecules are consumed, and the incipient soot grows while
the number of five- and six-member rings increases.

wards 10 000 g mol−1 for t ≥ 6 ns at 1350 K (Fig. S20a)
and for t ≥ 5 ns at 1500 K (Fig. S20b). Likewise, at 0.75 ns
for 1650 (Fig. S20c) and 1800 K (Fig. S20d), the molec-
ular weight distribution of reactive components spans 100
to 1000 g mol−1, indicating that nucleation has practically
stopped, and nascent soot clusters have been formed. At 6 ns
and beyond, the growth of the soot cluster stops (with molec-
ular weight peaks being observed around 10 000 g mol−1)
due to depletion of the reactive species.

3.2 Chemical structure of soot precursors

Tables 2–5 show a breakdown of the detailed chemical struc-
ture of the molecules generated during acetylene pyrolysis at
1500 K for 0.75 and 2 (Table 2), 3.75 (Table 3), 5 and 6 (Ta-
ble 4), and 8 ns (Table 5) for the simulation shown in Fig. 1b.
For clarity, the incipient soot is omitted at 5, 6, and 8 ns.

Early on (t ≤ 2 ns; Table 2), only small molecules consist-
ing of up to 4 C atoms are observed. Among those, acety-
lene is the most abundant (Fig. 3a), while H2, C2H (cyclic
and linear), C2H3, C2H4, C4H2 (as shown in Fig. 5), C4H3,
and C4H4 are also present at low concentrations. Shortly
after the onset of surface growth, at t = 3.75 ns (Tables 3
and S2), two (C84H39 and C87H40) soot nuclei appear (Ta-

ble S2). Parallel to this, both cyclic and linear molecules with
more than 6 C atoms emerge with most of the cyclic struc-
tures consisting of three-member rings (highlighted in yel-
low). Some of these three-member rings reported in Table 3
correspond to known monocyclic molecules, including cy-
clopropyne (Saxe and Schaefer, 1980) (molecule A); bicyclic
molecules, including bicyclo(1.1.0)butane (Fawcett, 2020)
(molecule B); cyclopropane (Li et al., 2020) (molecule C);
spiropentadiene (Billups and Haley, 1991) (molecule D);
and cyclopropylidene cyclopropane (Güney et al., 2013)
(molecule E). It should be noted that some of the three-
member ring structures predicted by ReaxFF, such as cyclo-
propyne, are not inherently stable and may exist only tran-
siently in high-energy states. C2H cyclic molecules (high-
lighted in pink) having three-center two-electron configura-
tion (Lammertsma and Ohwada, 1996) are observed at all
six time steps. Cyclobutane (highlighted in green) is only de-
tected at 3.75 ns (Table 3), indicating its thermodynamic in-
stability, consistent with Zádor et al. (2017). Aliphatic com-
pounds such as propane (Iijima, 1972); propene (Lide and
Christensen, 1961); butane (Bradford et al., 1977); butene
(Lu et al., 2017); and other alkanes, alkenes, and alkynes
are also observed at 3.75 ns or later (Tables 3–5). The five-
(blue-shaded rings) and six-member (red-shaded rings) rings
typically manifest in>C10 molecules (Tables 3 and S2). The
small molecules (H2, C2H, C2H2, C2H3, C2H4, C4H2, C4H3,
and C4H4) that have formed at earlier stages, persist at 3.75,
5, and 6 ns (Tables 3 and 4), albeit with a notable reduction
in their number concentration.

Due to their thermodynamic instability, the three-member
rings formed early on (e.g., Table 3: t = 3.75 ns) dissociate
almost immediately, as indicated by the drop in their num-
ber at 5, 6, and 8 ns, while molecules other than the incipi-
ent soot possess only a few five- or six-member rings during
these time steps (Tables 4 and 5). However, the total num-
ber of five- or six-member rings in the entire population of
soot precursor molecules is much higher (approximately 50
five-member rings, Fig. 6b, and 100–150 six-member rings,
Fig. 6c), suggesting that almost all of them belong to the in-
cipient soot.

At the initial stages of soot inception (t = 0.75 and 2 ns),
linear and branched aliphatic hydrocarbons are formed along
with unsaturated carbon chains and radical sites. One of the
most abundant radicals formed is ethenyl (C2H3, Fig. 5d).
Due to its rapid formation and almost immediate consump-
tion, ethenyl is crucial for further growth of hydrocar-
bon structures and soot inception, consistent with Wang et
al. (2021). By adding to unsaturated carbon bonds, ethenyl
can facilitate chain propagation and cross-linking for cycliza-
tion, leading to the formation of new rings, as evidenced by
C26H15 molecules at 3.25 ns (Table 3) and C19H32 molecules
at 8 ns (Table 5).

The present results highlight the relevance of chemical
nucleation in soot formation at intermediate temperatures
(1350–1800 K), emphasizing a substantial role for chemical
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Table 2. Chemical structures of all molecules formed during acetylene pyrolysis at t = 0.75 and 2 ns at 1500 K. Molecules larger than C4 are
not formed within the first 2 ns of acetylene pyrolysis at this temperature.

Table 3. Chemical structures of all molecules, composed of up to 25 carbon atoms, formed during acetylene pyrolysis at 3.75 ns at 1500 K.
Two larger nuclei (C84H39 and C87H40) are also present (shown in Table S2).
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Table 4. List of all molecules, aliphatic, cyclic, or aromatic, except the incipient soot, formed during acetylene pyrolysis at 5 (top row) and
6 ns (bottom row) at 1500 K, including their chemical structures. The excluded incipient soot consists of 1266 and 1307 C atoms at 5 and
6 ns, respectively.
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Table 5. List of all molecules, aliphatic, cyclic, or aromatic molecules, except the incipient soot (consisting of 1335 C atoms) formed during
acetylene pyrolysis at 8 ns at 1500 K, including their chemical structures.

pathways even in the absence of observable physical PAH
dimerization. This is in stark contrast to ReaxFF simulations
that start with PAHs as monomers (Mao et al., 2017), indi-
cating lack of nucleation at temperatures ranging from 1200
to 2400 K, despite soot yield peaks within this temperature
range (Frenklach et al., 1983).

The detailed chemical structure of molecules formed dur-
ing acetylene pyrolysis is also shown for 1350, 1650 and
1800 K at 0.75, 2, 3.75, 5, 6, and 8 ns (Tables S3–S15 in the
Supplement). For t ≤ 3.75 ns, formation of vinyl molecules
(C2H3) and cyclic C2H molecules is observed along with
small aliphatic molecules (< 5 C atoms) at 1350 K (Ta-
ble S3). For 1350 K at t = 5 ns (Table S4), three-member
rings and molecules containing > 5 C atoms are formed, co-
inciding with C2H2 consumption (Fig. 3a). At this tempera-
ture, hardly any five- and six-member rings are found in the
reported chemical structures (Tables S3–S6), which exclude
the incipient soot, indicating that most of these rings are
formed within the incipient soot nanoparticle. Nevertheless,
at t = 5 ns (i.e., 0.2 ns prior to the onset of surface growth),
a molecule with a six-member ring appears in the C6–C10
range (Table S4), but most of the larger molecules with>C10
are primarily long aliphatic chains.

Smaller benzene derivatives are observed in the reac-
tion pathway at 1650 (Tables S10–S11) and 1800 K (Ta-
bles S14–S15). At both 1650 (Tables S7–S11) and 1800 K

(Tables S12–S15), mostly three-member rings are formed up
to 6 ns, along with the incipient soot (excluded in the tables).
Approximately 0.05 ns prior to the onset of surface growth
(Table S12: t = 0.75 ns), a five-member ring spontaneously
forms. At T = 1650 K, a benzene derivative forms at 5 ns,
while naphthalene derivatives form at 6 and 8 ns (Table S11).
However, only a few small and intermediate molecules with
five- and six-member rings exist at t = 6 and 8 ns at 1800 K
(Table S15), further indicating that most of these rings be-
long to the large incipient soot nanoparticle. At all temper-
atures employed here (1350–1800 K), large molecules with
more than 10 C atoms are composed of a few (five- and six-
member rings) decorated with long branches (Tables 3–5, S2,
S3–S6, S7–S11, and S12–S15). Even though these structures
are different from the majority of those observed experimen-
tally (Lieske et al., 2023; Commodo et al., 2019; Jacobson
et al., 2020; Martin et al., 2021), which are composed of
aromatic islands with peripheral methyl groups, long alkyl
chains have also been observed (Schulz et al., 2019) on par
with the present simulations. It should also be noted that at
temperatures below 1800 K, which are relevant to soot for-
mation in flames, the ReaxFF-predicted cluster structures are
significantly different from those formed by acetylene com-
bustion at 2700 K (Wang et al., 2022a), by methane and ethy-
lene combustion at 3000 K (Wang et al., 2022b), by dimer-
ization of PAHs (Zhao et al., 2020), and by pyrolysis of n-
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decane at 3000 K (Liu et al., 2020) or n-heptane at 2200–
2600 K (Fakharnezhad et al., 2025), where PAH-like soot
precursors are formed, leading to large carbonaceous clus-
ters mainly composed of rings and containing only a small
fraction of branches. This indicates that the fuel type along
with the nucleation conditions can significantly affect the for-
mation mechanism and structure of soot.

4 Conclusions

The inception and early stages of soot surface growth by
acetylene pyrolysis are investigated using reactive molecular
dynamics at 1350–1800 K. These simulations do not assume
any specific soot precursors, allowing for a broader explo-
ration of the pathways involved in soot nucleation. Increas-
ing the temperature leads to faster formation of the incipi-
ent soot taking place through linearization, cyclization, and
subsequent surface condensation of radicals on the incipient
soot. During linearization and cyclization, small molecules
consisting of fewer than 6 C atoms, such as C2H3, C2H4,
C2H6, CH4, and C2, are formed at all temperatures. These
small C3–C6 molecules are mainly aliphatic chains or three-
member rings. Increasing the process temperature leads to
faster depletion of C2H2 molecules and faster formation of
these compounds. The growth of small C1–C5 molecules can
be attributed to reactive collisions, which eventually lead to
the formation of larger aliphatic compounds consisting of 6–
10 C atoms. At the initial stages of inception and prior to
the formation of the incipient soot, three-member rings are
formed, associated with the formation of compounds with
fewer than 10 C atoms. Once the incipient soot is formed,
the number of C1–C10 compounds and three-member rings
drops, while the number of five- and six-member rings in-
creases, indicating that the formation of larger rings is asso-
ciated with the formation and growth of the incipient soot.
The cyclic structures are mainly observed within the incip-
ient soot, which is supported by the information of the de-
tailed chemical structures of the molecules observed at dif-
ferent time steps. Most of these cyclic structures consist of a
few rings interconnected with aliphatic side chains. By pro-
viding a comprehensive list of all molecular precursors –
rather than focusing solely on the most abundant ones – this
study offers a more complete view of the chemical complex-
ity involved in soot nucleation. Tracking the pathway of for-
mation of these species could reveal new detailed chemical
routes that occur during soot nucleation, which might have
not been extensively considered in existing kinetic models,
thereby expanding the current understanding of soot forma-
tion pathways. However, verification of ReaxFF-derived re-
actions with ab initio quantum mechanics calculations, such
as density functional theory, is essential to ensure the impor-
tance of these reactions in soot formation kinetics.
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ulations. Post-processing of the chemical structures and ring
analysis were carried out as documented in Sect. 2, using
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