
Aerosol Res., 3, 271–291, 2025
https://doi.org/10.5194/ar-3-271-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Parameterization of particle formation rates in distinct
atmospheric environments

Xinyang Li1, Tuomo Nieminen1,2, Rima Baalbaki1,3, Putian Zhou1, Pauli Paasonen1, Risto Makkonen4,
Martha Arbayani Zaidan1,5, Nina Sarnela1, Chao Yan1,6, Tuija Jokinen1,3, Imre Salma7,

Máté Vörösmarty8, Tuukka Petäjä1, Veli-Matti Kerminen1, Markku Kulmala1,6, and Lubna Dada1,9

1Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, 00560 Helsinki, Finland
2Department of Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland

3Climate & Atmosphere Research Centre (CARE-C), Cyprus Institute, P.O. Box 27456, Nicosia, 1645, Cyprus
4Hevesy Climate System Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland

5Department of Computer Science, University of Helsinki, 00560 Helsinki, Finland
6Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric

Sciences, Nanjing University, Nanjing, 210023, China
7Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary

8Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
9PSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, Switzerland

Correspondence: Xinyang Li (xinyang.li@helsinki.fi) and Lubna Dada (lubna.dada@helsinki.fi)

Received: 23 January 2025 – Discussion started: 6 February 2025
Revised: 28 April 2025 – Accepted: 4 May 2025 – Published: 27 May 2025

Abstract. Atmospheric particle formation rate (J ) is one of the key characteristics of new particle formation
(NPF) processes worldwide. It is related to the development of ultrafine particle growth to cloud condensation
nuclei (CCN) and, hence, Earth radiative forcing in global models, which helps us to better understand the impact
of NPF on cloud properties and climate change. In this work, we parameterized four semi-empirical J models for
5 nm atmospheric particles using field measurements obtained from distinct environments that varied from clean
to heavily polluted regions and from tropical to polar regions. The models rely primarily on sulfuric acid as a
condensing vapor, a condensation sink to account for the vapor loss, and relative humidity for the meteorological
contribution to J . However, the dependencies between J , condensation sink, and relative humidity are affected
by their interlinked relations to sources and sinks of condensable vapors other than sulfuric acid and that of
the potential traffic emissions to the observed size range. The parameterization results showed that our models
were able to produce plausible predictions for boreal forest environments, heavily polluted environments, and
biogenic environments with high relative humidity. We further tested the models in the global simulation module
Tracer Model 5 (TM5, massively parallel version) to simulate the particle number size distribution across 14
global atmospheric measurement sites. The simulated results showed satisfactory predictions of particle number
concentrations for all of the tested environments, with significant improvement in the nucleation mode and better
prediction accuracy for the Aitken and accumulation modes compared to the binary sulfuric acid–organic vapor
model in Riccobono et al. (2014). Our study has successfully provided powerful tools for predicting J5 on a
global scale across various environment types using the most essential and more accessible variables involved
in the NPF processes. Essentially, this work reinforces the necessity for global research into the investigation of
environment-oriented meteorology-involved NPF processes.
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1 Introduction

Atmospheric new particle formation (NPF) is a natural phe-
nomenon observed globally (Bousiotis et al., 2021; Brean et
al., 2023; Gordon et al., 2017; Kerminen et al., 2018; Niem-
inen et al., 2018). As particles form and grow on regional
scales, they can reach large enough sizes at which they can
act as cloud condensation nuclei (CCN) for water vapor to
condense onto when forming clouds. This process affects
cloud properties (Roldin et al., 2011; Sanchez et al., 2016;
Spracklen et al., 2008) and ultimately the global climate, de-
pending on the particle numbers, their sizes, and their chem-
ical compositions (Bellouin et al., 2020; Calvo et al., 2013;
Uno et al., 2020). Particle formation rate (J ) is an essential
parameter describing the NPF intensity, which is often uti-
lized to represent NPF in global models to simulate the effect
of NPF on cloud properties and radiative forcing on Earth. To
derive a representative parameterization of J for global sim-
ulation, we require a broad understanding of NPF in different
environments, temporally and spatially. That being the case,
it is essential to obtain the atmospheric measurements of both
particle number size distributions and NPF precursor vapors
for atmospheric observations and model developments.

The NPF processes have been investigated and parameter-
ized based on particle formation mechanism theories (Chang
et al., 2009; Kulmala et al., 2001; Lehtinen and Kulmala,
2003); field measurements from specific environments such
as pristine boreal forests (Kulmala et al., 2001; Nieminen
et al., 2011; Paasonen et al., 2010), urban cities (Salma et
al., 2011, 2016, 2021; Salma and Németh, 2019; Zhang et
al., 2010), rural areas (Lee et al., 2019; Yli-Juuti et al., 2009),
and marine environments (Zhang et al., 2010); and chamber
experiments (Kirkby et al., 2011; Lehtipalo et al., 2018). In
addition to neutral particle formation mechanisms, the ion-
induced nucleation is also covered in J parameterizations
(e.g., Nieminen et al., 2011; Määttänen et al., 2018). The ex-
isting literature primarily focused on the activation and sur-
vival of nucleation mode particles down to 1.5 nm, involving
complex microphysics of aerosol particles, such as nanome-
ter cluster production and losses due to cluster coagulation
and growth (Bousiotis et al., 2021; Chu et al., 2019; Kermi-
nen et al., 2018; Nieminen et al., 2018). Furthermore, distinct
effects on particle formation rates influenced by the same fac-
tors were seen in comparable environmental settings. How-
ever, these environment-specific models typically have lim-
ited applications for global simulation implementations that
encompass the diverse atmospheric conditions on Earth.

To simulate particle formation rates, one usually starts
from the nucleation mode size range. Global modelers have
been facing great challenges in simulating nucleation mode
particles because large-scale models have limited capabilities
in treating the complicated aerosol dynamics taking place
in the sub-5 nm particle size range. The formation rate at
5 nm is shown to be important because, after sizes of about a
few nanometers in diameter, particle growth rates show rela-

tively limited variability in different environments (Kulmala
et al., 2022a, b, 2023). In addition, we currently do not have a
good enough theoretical understanding of the processes dic-
tating particle growth rates at the smallest sizes or the sur-
vival of such particles from coagulation scavenging (e.g., Cai
et al., 2022; Tuovinen et al., 2022; Marten et al., 2022).

The essential parameters for J parameterizations should
include at least one type of precursor vapor, and some may
also cover meteorological parameters and the sinks for va-
pors and particles. For instance, sulfuric acid (H2SO4), as
the most known precursor vapor, plays a critical role in par-
ticle formation and growth processes due to its low volatility
(Kulmala et al., 2004; Myllys et al., 2019). In the earlier pa-
rameterizations of NPF mechanisms, J correlated (linearly
or squared) with H2SO4 concentrations in various environ-
ments (Paasonen et al., 2010). In terms of meteorology, air
temperature (T ), relative humidity (RH), global solar radia-
tion (GRad), wind speed (WS), and wind direction influence
the particle formation rates in certain environments as well
(Laarne et al., 2022; Salma et al., 2021; Zaidan et al., 2018).
The variation of T can influence the precursor vapor for-
mation and the stability of NPF processes: a higher T can
enhance the biogenic emissions that participate in particle
formation in a boreal forest (Dada et al., 2017; Nieminen et
al., 2015), while a lower T favored H2SO4–amine cluster sta-
bility in a megacity (Deng et al., 2020). RH can impact the
precursor vapor formations as well as the aerosol formation
rates (Ding et al., 2021; Hellmuth, 2006). The variation of
RH is dependent on T , so that the increase in T during day-
time increases the planetary boundary layer height (PBLH),
which in turn dilutes the air mixture and decreases the RH
(Liu et al., 2018) as well as particle number concentrations
(Mazon et al., 2016) in the atmosphere. For condensable va-
por loss, we usually include the term “condensation sink”
(CS), which describes the loss rate of condensable vapors
to aerosol particles, and it typically declines before an NPF
event starts. H2SO4 concentrations, on the other hand, in-
crease due to the reduction in CS, which means that the con-
densable vapors are not lost onto the aerosol particles as ef-
ficiently as they would be at greater CS values (Hellmuth,
2006; Kulmala et al., 2012).

In general, the developed J models underestimate the ob-
served particle number concentration, which may be due
to NPF schemes being poorly represented in these models.
Many J parameterization works were conducted, focusing
on the formation mechanisms from sulfuric acid (Paasonen et
al., 2010), sulfuric acid–water (Määttänen et al., 2018), sul-
furic acid–ammonia (Glasoe et al., 2015), and sulfuric acid–
organic vapor (Paasonen et al., 2010; Riccobono et al., 2014).
However, some models are likely only applicable to certain
types of environment or primarily cover the microphysics
of the particle nucleation in the sub-3 nm range, where the
nucleated clusters face higher instability due to the higher
evaporation rates than condensation rates (Deng et al., 2021;
Wang et al., 2011). Bergman et al. (2022) attempted an
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organic-vapor-based NPF scheme in addition to the com-
monly used binary water–sulfuric-acid-based scheme to sim-
ulate global particle formation and number concentrations.
This scheme improved the simulated number concentrations
across the observation stations, although they were still un-
derestimated compared to the observations, suggesting that
the parameterization of early growth of particles to a diame-
ter of 5 nm still requires improvement.

To predict the particle formation rate at 5 nm originating
from NPF and subsequent growth and to understand and pre-
dict the climatic impacts of NPF and initial growth on a
global scale, we parameterize particle formation rates (J ) at
5 nm using combined measurement data from six different
environments: Hyytiälä (boreal forest close to a rural envi-
ronment, Finland), Beijing (megacity, China), Värriö (remote
boreal forest, Finland), Budapest (urban, Hungary), Agia
Marina Xyliatos (rural, Cyprus), and Manacapuru (Amazo-
nian basin, Brazil). The parameterizations of J were based
on the analysis of atmospheric particle number–size distribu-
tions. Sulfuric acid concentrations, RH, and CS are the main
input variables in the parameterization models. By includ-
ing information from various types of environments, we will
be able to demonstrate whether our models can adequately
explain the formation rate of 5 nm particles on a wider en-
vironmental scale. The parameterized models are then incor-
porated into European Community Earth-System (EC-Earth)
models to simulate particle formation rates on the global
scale (EC-Earth, chemistry transport model TM5: Tracer
Model 5, version TM5-chem-v3.0; details can be found in
the Supplement) (Huijnen et al., 2010).

This work aims to provide an effective tool for global par-
ticle formation rate estimations. Our parameterizations have
three main features: (1) the number of inputs is limited to
the most essential parameters involved in the NPF process,
(2) they do not involve complex microphysics at particles
smaller than 5 nm, and (3) they cover a wide range of en-
vironment types. These features will enhance the applicabil-
ity of the parameterizations for the purpose of global model
application.

2 Measurement locations and instrumentation

This study includes measurements from six different sites
representing different environmental conditions. A summary
of all of the locations and instrumentation used is given in
Table S1 in the Supplement. Figure 1 shows the map of the
measurement sites included in this study.

2.1 Measurement sites

2.1.1 Rural boreal forest environment: Hyytiälä, Finland

The measurement data were obtained from the SMEAR II
(Station for Measuring Ecosystem–Atmosphere Relations)
station situated in a Scots pine (Pinus sylvestris) forest in

Hyytiälä (61.1° N, 24.17° E; 181 m a.s.l.; Hari and Kulmala,
2005), southern Finland. This measurement site is described
as having a rural regional background with minimal an-
thropogenic emissions. Hyytiälä data cover the period from
21 March 2016 to 18 August 2019.

2.1.2 Remote sub-arctic boreal forest: Värriö, Finland

The SMEAR I measurement station (67°45′ N, 29°36′ E;
390 m a.s.l.) is located on the top of Kotovaara hill in north-
eastern Finland. Similar to Hyytiälä, the site is also a rural
background covered mainly by a Scots pine (Pinus sylvestris)
forest located on the northern side of the Värriö fell range.
However, it is affected by a potentially polluted air mass that
comes from the Kola Peninsula rather than local industrial
pollutants. A detailed description of the SMEAR I station can
be found in Kyrö et al. (2014). The data used from Värriö are
from 5 April to 13 August 2019.

2.1.3 Polluted megacity: Beijing, China

In Beijing, the measurements were performed on the western
campus of the Beijing University of Chemical Technology
(BUCT, 39.94° N, 116.30° E; 20 m a.s.l.). The sampling took
place from outside the window on the fifth floor of the uni-
versity building close to a street with busy traffic. For more
details on the description of the BUCT measurement site, see
Liu et al. (2020). The data are available from 29 May 2018
to 3 April 2019.

2.1.4 Urban site: Budapest, Hungary

The measurements took place at the Budapest platform of
the Aerosol Research and Training (BpART) Laboratory
(47.47° N, 19.06° E; 115 m a.s.l.) of Eötvös Loránd Univer-
sity situated on the bank of the Danube River. The site repre-
sents a mixed average atmosphere of the city center (Salma et
al., 2016). The data are obtained from 22 March to 17 April
2018.

2.1.5 Mediterranean rural site: Agia Marina, Cyprus

The measurements were conducted at the Agia Marina Xylia-
tou (AMX) station (35.03° N, 33.05° E; 532 m a.s.l.) of the
Cyprus Atmospheric Observatory (CAO). The site represents
a rural background location situated at the foothills of the
Troodos mountains, with agricultural land in the vicinity.
The data are obtained between 22 February and 3 March
2018. For more details about the site, see, e.g., Baalbaki et
al. (2021).

2.1.6 Amazonian basin: Manacapuru, Brazil

The Manacupuru measurement site is in a pastureland 70 km
west of Manaus, Brazil, in central Amazonia. This site re-
ceives air masses from various resources, including rural,
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Figure 1. Map of the measurement locations included in this study. The number markings indicate the exact locations of the measurements.
Created using a template from Canva (https://www.canva.com/, last access: 8 May 2024).

biogenic, and anthropogenic, from the nearby municipality
(Manaus). The trace gases and meteorological measurements
were performed during the GoAmazon2014/5 campaign at
the T3 site (3.21° S, 60.6° W; 50 m a.s.l.), 10 km northeast of
Manacapuru, Brazil (Martin et al., 2016; Schiro et al., 2018).
A more detailed description of the measurement site can be
found in Myers et al. (2022). The data cover the time period
from 22 August to 9 October 2014.

2.2 Instrumentation

2.2.1 Sulfuric acid measurements and proxies

H2SO4 concentrations were measured at all of the sites,
except for the Amazonian basin, using a chemical ioniza-
tion atmospheric pressure interface time-of-flight (CI-APi-
ToF) spectrometer (Eisele and Tanner, 1993; Jokinen et
al., 2012) with NO−3 as the reagent ion and analyzed using
the tofTools package based on the MATLAB software (Jun-
ninen et al., 2010). In the Amazonian basin, H2SO4 concen-
trations were measured using a selected ion chemical ioniza-
tion mass spectrometer (SICIMS); see Myers et al. (2022) for
more details. The H2SO4 concentration measurements were
taken from different levels, ranging from ground level up to
35 m above ground level (a.g.l.). The CI-APi-ToF spectrom-
eters were calibrated uniformly before the measurement in
each location following the technique described by Kürten
et al. (2012), except for the Amazonian basin, where the
SICIMS was calibrated following the scheme described in
Mauldin et al. (1998).

To increase the applicability of our derived parameteriza-
tion, H2SO4 proxy data from Hyytiälä and Beijing were in-
cluded as an additional testing dataset. The proxy data were
calculated using the proxy specific to the boreal forest en-
vironment and the polluted megacity developed by Dada et

al. (2020). For Hyytiälä, the sulfuric acid proxy data range
from 22 August to 25 December 2016 and from 8 March
2018 to 26 February 2019, denoted as HyytiäläSAprx. For Bei-
jing, the time period is from 15 March to 3 April 2019, de-
noted as BeijingSAprx. The subscript “SAprx” (SA as in sul-
furic acid) in HyytiäläSAprx and BeijingSAprx indicates that
the datasets utilize the H2SO4 concentration from proxies as
input for the testing dataset.

2.2.2 Particle number size distribution

The particle number size distribution (PNSD) measure-
ments were obtained from different types of setups at each
site. Hyytiälä had twin differential mobility particle sizers
(DMPSs; Aalto et al., 2001). Värriö had DMPSs (Jokinen
et al., 2022). Beijing had a particle size distribution (PSD)
system with a nano-differential mobility analyzer (DMA)
and an aerodynamic particle sizer (APS) (Zhou et al., 2021).
Budapest had a flow-switching-type DMPS (6–1000 nm;
Salma et al., 2016). Cyprus had a neutral cluster and air ion
spectrometer (NAIS) and a scanning mobility particle sizer
(SMPS; Baalbaki et al., 2021). In the Amazonian basin, the
measurements were conducted using a SMPS (10–1000 nm).
It is important to note that we do not aim to compare the
PNSD measurements from all of the chosen sites. Instead,
the PNSD measurements were used to calculate the forma-
tion rates based on changes in particle number concentrations
under local conditions.

2.2.3 Meteorological variable

The meteorological variables included in this study are RH
(%) and T (°C). In Hyytiälä, RH and T were measured
at 16.8 m using a Rotronic MP102H RH sensor (Rotronic
Hygromet MP102H with Hygroclip HC2–S3, Rotronic AG,
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Bassersdorf, Switzerland). In Värriö, RH and T were mea-
sured by a Rotronic MP106A captive sensor. In Beijing,
RH and T were monitored by the Vaisala weather station
(AWS310). In Budapest, RH and T were monitored using
a Vaisala HMP45D temperature and humidity probe and
a Vaisala WAV15A anemometer located at the site of the
BpART laboratory. In Cyprus, RH and T were measured
by a meteorological station in a nearby village (35.01° N,
33.05° E), 2.85 km away from the measurement site. In the
Amazonian basin, RH and T were measured at the Atmo-
spheric Radiation Measurement (ARM) user facility.

2.3 Data analysis

2.3.1 Calculation of particle formation rates

To develop more inclusive and generalized models, the pa-
rameterization included data from both NPF event days and
non-NPF-event days. This approach recognizes that the pro-
duction of atmospheric secondary particles from non-NPF
events (days with no apparent particle growth) is becoming
more significant in a world with growing anthropogenic in-
fluence (Kulmala et al., 2022a). Such a measure would in-
crease the applicability of our models on a global scale.

The observed particle formation rates (J5) at 5 nm were
calculated from the measured PNSD according to Eq. (1)
(Kulmala et al., 2012).

Jdp =
dNdp

dt
+CoagSdp ×Ndp +

GR
1dp
×Ndp (1)

The first term dNdp/dt is the change in concentration in
the size bin, 5–9 nm. Ideally, this term and the concentra-
tion of particles within the size range, Ndp , in the following
terms are associated with the growth of particles formed by
atmospheric NPF past 5 nm; however, especially in traffic-
related environments, they may also have an unknown con-
tribution by direct particle emissions to this respective size
range (Okuljar et al., 2021; Rönkkö et al., 2017). The sec-
ond term CoagSdp is the coagulation sink, which describes
the 5–9 nm particle losses due to coagulation with larger par-
ticles calculated from the PNSD at each measurement site
(Kulmala et al., 2012). The third term describes the loss of
particles due to their growth out of the size bin. Here, we cal-
culated the growth rates (GRs) of 5–9 nm particles using the
maximum concentration method (Kulmala et al., 2012) for
days classified as NPF event days as described by Dal Maso
et al. (2005). The GR for non-event days was approximated
using the normalized PNSD from the sum of non-NPF events
at each site. Such an approximation is validated for several
locations as a “quiet NPF” occurs with the similar GR to that
on NPF event days (Kulmala et al., 2022a).

2.3.2 Extrapolation of particle formation rates

For Budapest and Manacapuru (Amazonian basin), the par-
ticle formation rates were calculated from PNSD measure-

ments at 6 and 10 nm, respectively. Therefore, we obtained
J5 by extrapolating from J6 and J10, respectively. The J5 ex-
trapolation followed the analytical formula derived by Ker-
minen and Kulmala (2002). We extrapolated J5 from J6 for
Budapest. For Manacapuru, the extrapolations were done
separately for J10 (wet season) and J14 (dry season), due to
the particle size limit of the measurement instrument.

2.3.3 Condensation and coagulation sink (CS and
CoagS)

The CS and CoagS were calculated from the measured PNSD
data for each site using the method proposed by Kulmala et
al. (2012). To ensure the comparability between all of the lo-
cations, both CS and CoagS were calculated without the cor-
rection for hygroscopic growth. There are several ways to de-
termine the hygroscopic growth factors in CS and CoagS cal-
culations. Laakso et al. (2004) developed parameterizations
for Hyytiälä based solely on the meteorological conditions
and aerosol composition in Hyytiälä, which results in the in-
applicability of that method to other sites. In the Supplement
of Baalbaki et al. (2021), Fig. S4 shows that the CS with hy-
groscopic correction is about 1.1–1.3 times higher than the
dry CS, which would result in an overestimation of CS for the
case of Cyprus. Petters and Kreidenweis (2007) introduced
the single hygroscopicity parameter κ (kappa), which can be
derived from a humidified tandem differential mobility ana-
lyzer (HTDMA) or cloud condensation nuclei counter mea-
surements, or it can be based on aerosol chemical composi-
tion obtained from instruments such as the Aerosol Chemical
Speciation Monitor (ACSM) or aerosol mass spectrometers
(AMSs). In other locations, since organics are typically the
dominant component of aerosol mass in continental areas or
marine polluted areas (Chen et al., 2022) and are less hygro-
scopic than inorganics, one can expect an underestimation of
CS similar to the one reported in Baalbaki et al. (2021). As
a result, we omitted the hygroscopic growth impact for the
chosen measurement sites to harmonize the data composition
and the later model analysis.

2.3.4 Training and testing datasets

The parameterizations were developed using the combined
dataset from all six measurement sites at an hourly time
resolution. Data points were selected by considering the
detection limits of the instruments, and, therefore, the fil-
ters were set to J5> 1× 10−5 cm−3 s−1, H2SO4 concentra-
tion> 5×103 cm−3, RH∈ [0,100] %, and CS> 1×10−5 s−1.
The complete dataset was then randomly resampled into a
training set (75 % of the complete dataset) and a testing
set (25 % of the rest of the complete dataset) for parame-
terization. In model testing, we included two additional in-
puts from H2SO4 concentration proxies developed by Dada
et al. (2020) for Hyytiälä and Beijing. The detailed num-
bers of data points per site are shown in Table 1. The data
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distribution and comparison of each input variable are dis-
played in Fig. S2 in the Supplement, where the overall varia-
tions of the input variables across the six sites are distinct in
their range and intensity, which emphasizes the inclusivity of
model training for wider application in global environments.

3 Parameterization of J5

3.1 Derivation of parameterization models

We derived the parameterized J5 based on the input vari-
ables (H2SO4, RH, and CS), which were chosen based on
field observations that highlighted their roles in the particle
formation mechanism across various environments (Baalbaki
et al., 2021; Dada et al., 2020; Kerminen et al., 2018; My-
ers et al., 2022; Salma et al., 2016, 2021; Yan et al., 2021).
It has been discovered that NPF events occur favorably un-
der lower RH, e.g., in boreal forests (Dada et al., 2018; Yao
et al., 2018), Mediterranean regions (Debevec et al., 2018),
the CLOUD chamber experiment (Duplissy et al., 2016), and
model studies (Hamed et al., 2011). RH was shown to be
seasonally related to cloudiness and global radiation, so that
decreasing global radiation can lead to increased RH and
cloudiness within the troposphere (Ruosteenoja and Räisä-
nen, 2013). To reduce the model complexity, we opted to use
RH as an indirect indicator of global radiation. A lower CS
facilitates the occurrence of NPF events, even in contrasting
environments with distinct types of condensable vapor. For
example, CS is a measure of a sink for anthropogenic va-
pors in a megacity (Wang et al., 2011), biogenic vapors in a
clean boreal forest (Dada et al., 2017; Tuovinen et al., 2020),
and growing sub-5 nm clusters and particles (Kulmala et
al., 2017). When combined with H2SO4 as an input variable,
the evidently important sink effect of a pre-existing particle
population on the ambient H2SO4 concentration is implicitly
transferred from CS to H2SO4 in our parameterization. In-
directly, CS may also be associated, either causally or not,
with (1) emissions or sinks of vapors other than H2SO4 par-
ticipation in NPF or particle growth and (2) primary particle
emissions from traffic, which would influence particle for-
mation rates estimated from observations using Eq. (1). Fur-
thermore, since we omit the influence of hygroscopic growth
of particles on CS, a fraction of the real sink effect of CS is
implicitly transformed into the variable RH in our parame-
terization.

We tested with T as an input variable during model deriva-
tion and training. However, the modeled results did not show
improvement compared to the current parameterization, sug-
gesting that T provided redundant information for describing
particle formation in the context of our model’s global appli-
cation.

Other than sulfuric acid, highly oxygenated organic
molecules (HOMs) and ammonia (NH3) have been found
to play a significant role in particle formation processes
(Bianchi et al., 2019; Lehtipalo et al., 2018). The possi-

ble cluster types may include H2SO4–NH3–H2O (Yu et
al., 2018) and HNO3-related clusters such as HNO3–H2SO4–
NH3 in the upper-tropospheric particle nucleation (Wang et
al., 2020, 2022, 2023). However, we are unable to include
HOM or NH3 concentrations owing to limited data avail-
ability from the chosen measurement sites. So far, long-term
measurements (> 1 year) of HOMs, matching the time range
covered by other variables, are only available in Hyytiälä
from a CI-APi-ToF mass spectrometer. However, this is not
the case at the other sites, limiting our ability to have simulta-
neous HOM data across all of the environments included in
this study. Similarly, the NH3 concentrations either did not
cover the same time period as the other variables or were un-
available for the other environments.

Different versions of the parameterization models

The derived model functional forms are as follows.
Model 1 (the baseline model, Eq. 2) presents the sim-

plest particle formation mechanism based solely on the abun-
dance of the precursor vapor H2SO4 concentrations in the at-
mosphere. The coefficient k1 serves as a scaling coefficient
that represents the activation rate of clusters in the presence
of H2SO4 molecules during cluster formation (Kulmala et
al., 2006; Paasonen et al., 2010).

J5 = k1×[H2SO4] (2)

Model 2 (Eq. 3) introduces RH in addition to model 1 to
partially represent the effect of the changing meteorological
conditions relating to the global radiation and ambient water
vapor content on J5 in general in different types of environ-
ments (Dada et al., 2017; Hamed et al., 2011; Li et al., 2019).
The coefficient k2 serves as a scaling coefficient and is shown
as the activation efficiency of the nucleated clusters.

J5 = k2×[H2SO4]×RHk
RH

(3)

Model 3 (Eq. 4) includes, in addition to model 2, the factor
CS. As discussed above, in our parameterization CS is con-
nected not only to the sink of newly formed particles prior to
their growth past 5 nm, but possibly also to sinks or sources
of vapors other than H2SO4 participating in particle forma-
tion and growth and, in polluted environments, sub-10 nm
particle emissions from traffic. The coefficient k3 serves as
a scaling coefficient for the activation and survival efficiency
of the nucleated clusters.

J5 = k3×[H2SO4]×RHk
RH
×CSk

CS
(4)

Model 4 (Eq. 5) additionally accounts for the formation of
H2SO4 multimers in the gas phase prior to cluster formation
as assumed by the kinetic theory (McMurry and Friedlander,
1979). The coefficient kSA represents the number of H2SO4
molecules (2, 3, 4, etc.). Therefore, k4 in this case is not the
activation coefficient anymore but includes both the collision
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Table 1. Number of data points from each measurement site. The numbers in the “Total” column account for the data points from the six-site
combined dataset utilized in model training and testing. The training set contains 75 % of the total training data points, with 25 % for the
testing set.

Site Hyytiälä Beijing Värriö Budapest Cyprus Manacapuru Hyytiäläproxy Beijingproxy Total

Training 5003 1342 728 367 140 140 – – 7720
Testing 1642 501 248 109 34 40 797 164 3535

frequency and the probability of a stable particle formation
after the collision (Sihto et al., 2006; Weber et al., 1996).

J5 = k4×[H2SO4]
kSA
×RHk

RH
×CSk

CS
(5)

3.2 Model training results

To derive a parameterized J5 based on precursor and other in-
put variables from the training dataset, we used the fmincon
optimization algorithm in MATLAB to retrieve the values of
each coefficient (k1–k4, kSA, kRH, and kCS) from the train-
ing dataset. The coefficients obtained for each of the models
can be found in Table 2. The derived models with the op-
timized coefficients were applied to the testing datasets and
compared with the observed J5 and the parameterized J5. We
evaluated the performance of each model based on the data
distribution, the resulting deviation from observations, and
the model uncertainty. To maintain the global model’s sim-
plicity, the parameterization covered both daytime and night-
time data for all of the sites in all of the models.

Figure S3 presents the measured to modeled J5 from mod-
els 1 to 4 using training datasets from six measurement
sites, including the slopes and coefficient of determination
(R2). Overall, by comparing model 1 (Fig. S3a) and model 2
(Fig. S3b), we observed an improvement in the model per-
formance with the inclusion of RH. The R2 value improved
from 0.28 to 0.44, and the slope increased from 0.29 to 0.56.
This observation confirmed the importance of considering
meteorological impact when parameterizing J5. By includ-
ing CS in model 3, the model improved further (Fig. S3c),
with R2 increasing from 0.44 to 0.49 and the slope from
0.56 to 0.62. To further introduce the kinetic theory and the
formation of H2SO4 dimers and other multimers, we added
an exponent over H2SO4 in model 4 (Fig. S3d). This ad-
dition showed a further improved correlation and slope be-
tween the measured or modeled data for the training datasets
(R2
= 0.57, slope= 0.76). In subsequent testing, model 4

generally outperformed the other models (see Sect. 4 and
Fig. 2).

3.3 Model evaluations

3.3.1 Mean absolute error (MAE) and root mean square
error (RMSE)

We computed the MAE and RMSE for each model using the
testing dataset to gain a better understanding of the models’

performance. The numerical values of the MAEs and RMSEs
are given in Table S3.

The MAE calculation equation is as follows:

MAE=
1
n

n∑
i=1
|yi − ŷi | , (6)

where n is the number of data points (here it is the total num-
ber of data points from the testing set; see Table 1), yi is
the observed value, and ŷi denotes the predicted value. The
MAE measures the accuracy of the models’ prediction power
by quantifying the average magnitude of errors between ob-
served and predicted values (Chai and Draxler, 2014). A
lower model error is manifested by a lower MAE value.

The RMSE is calculated as the square root of the differ-
ence between the measured (yi) and predicted (ŷi) J5 values
normalized by the number of data points.

RMSE=

√√√√1
n

n∑
i=1

(yi − ŷi)2 (7)

The RMSE also measures the average magnitude of the er-
rors of models. However, unlike the MAE, the RMSE squares
the errors, giving greater weight to larger errors and penal-
izing them more heavily (Chai and Draxler, 2014). There-
fore, RMSE values reveal whether the models’ performances
are highly influenced by large prediction errors. Similar to
the MAE, lower RMSE values indicate better model perfor-
mance.

Figure S4 (upper panel) depicts a declining trend of the
overall MAE from models 1 to 4 (Eqs. 2–5). For the envi-
ronmental types investigated in this study, the MAE values
of the four models from all of the sites are lower than 1, indi-
cating that the mean differences in magnitude for J5 are mi-
nor when utilizing the parameter settings from our models.
However, Budapest stands out due to the apparently higher
MAE, potentially highlighting the distinct NPF mechanism
in Budapest compared to the other sites as well as the sea-
sonal limitations in its data (spring 2018 only).

The RMSE values increased as more parameters were
added to the model, peaking for model 3 (Fig. S4, lower
panel), even though model 3 can predict J5 for multiple types
of environments at a satisfactory level. We can see that, from
model 1 to model 2, the inclusion of RH increased the model
errors more compared to the addition of CS from model 2 to
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Table 2. Coefficient values (kx , kRH, kCS, and kSA) retrieved from parameterizations using the training dataset. The term “SSe” represents
the sum of the squared error of each model. The units of kx (x= 1, 2, 3, and 4) vary as the functional form of the model changes, while kRH,
kCS, and kSA do not contain units. Since RH is counted using percentage (%), a dimensionless number, the scaling coefficients k0 mainly
count the units from H2SO4 concentrations and CS. As such, we must ensure that the RH input is in its percentage.

Model Functional form kx kRH kCS kSA SSe

1 k1×[H2SO4] 6.45× 10−8 (s−1) 2.78× 103

2 k2×[H2SO4]×RHk
RH

1.48× 10−4 (s−1) −1.9 5.16× 103

3 k3×[H2SO4]×RHk
RH
×CSk

CS
2.81× 10−4 ([s−1

]
0.45) −1.28 0.56 5.18× 103

4 k4×[H2SO4]
kSA
×RHk

RH
×CSk

CS
1492.02 ([cm−3

]
0.78
×[s−1

]
0.33) −2.53 0.67 0.23 3.36× 103

Figure 2. Modeled and measured J5 scatterplots in log-scale from four models using the testing dataset containing data from all six sites at
hourly time resolution. Each color represents the data from one measurement site, including datasets with H2SO4 proxy data from Hyytiälä
and Beijing. The straight line shows the robust linear fit between the modeled and measured J5 values in log-scale, and the dashed line
represents the 1 : 1 line. The correlation coefficient r , the slope of the linear fit, and the coefficient of determination R2 are shown in the title
of each subplot.

model 3. However, the RMSE values dropped significantly
when H2SO4 was allowed to vary with an exponent kSA in
model 4 in the presence of both RH and CS.

Based on the results summarized above, models 3 and 4
(Eqs. 4 and 5) seem to be the most promising for global
J5 prediction among all the model types owing to their low

MAE values. However, the lower RMSE for model 4 showed
better performance compared to model 3.

3.3.2 Akaike information criterion

The Akaike information criterion (AIC) is a statistical mea-
sure that helps to evaluate the goodness of fit of a statisti-
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cal model. We use the AIC as an evaluation tool because it
can evaluate models with different numbers of parameters
and complexities, ensuring a balanced assessment. Eventu-
ally, it allows us to select the model with the best balance
between the model complexity and goodness of fit. The pa-
rameters used to calculate the AIC for each site are shown in
Tables S4–S6. A lower AIC score indicates a superior good-
ness of fit and a lower tendency for model overfitting. The
relative likelihood term (L, L= e(AICmin−AICi)/2), calculated
from AIC scores, reflects the likelihood that the ith model
will minimize information loss as compared to the model
with the lowest AIC. A relative likelihood of 1 suggests that
the model exceeds other models in minimizing information
loss. For boreal forest environments (Table S4) and urban en-
vironments (Table S5), models 1 and 4 both minimized infor-
mation loss the most. For rural regions, model 4 (Eq. 5) per-
forms the best (Table S6). Compared to the baseline model
(model 1, Eq. 2), we find that H2SO4 is a more powerful
parameter than RH or CS in all environments. However, in
Manacapuru, including RH and CS clearly shows an im-
proved predictive accuracy in model 4 (Eq. 5).

4 Results and discussion

4.1 Parameterization testing results

The scatterplots (Fig. 2) demonstrate the overall performance
of the parameterizations from the four models (Eqs. 2–5) us-
ing the testing dataset. The overall and site-specific Pearson
coefficients, slopes from robust linear fits between the mea-
sured and modeled J5, and the number of data points from the
testing dataset can be found in Table 3. Overall, r increased
significantly for models 2 and 3 (Fig. 2b and c, r = 0.69,
r = 0.71) compared to model 1 (Fig. 2a, r = 0.55) as we in-
clude relative humidity and condensation sink as model pa-
rameters. Model 4 provides the best linear fit results, im-
plying that the model can predict an overall reliable estima-
tion of J5 in all the investigated environment types (Fig. 2d,
r = 0.78). It is notable that, with the combined datasets, the
condensation sink receives a positive exponent in models 3
and 4 (kCS= 0.56 and 0.67, respectively), likely due to its
association with concentrations of condensable vapors other
than H2SO4 and traffic emissions.

4.1.1 Boreal forests: Hyytiälä and Värriö

Given the boreal forest background, Hyytiälä and Värriö
exhibited comparable variations in the distribution of mod-
eled J5 values from the four model types. As shown in
Fig. 3, model 3 (a3, b3, c3) and model 4 (a4, b4, c4) illus-
trated a more centered data distribution between the mod-
eled and measured J5, which demonstrates a potential favor-
ing of NPF under low-RH conditions likely associated with
increased global radiation for the boreal forest environment
(Dada et al., 2018; Hamed et al., 2011) and lower sinks for

vapors and growing sub-5 nm particles (see Sect 3.1). Note
that the mean H2SO4 concentration in Värriö is about twice
as high as that in Hyytiälä, in contrast to CS, which is clearly
lower in Värriö (Table S2). The low CS in Värriö compared
with Hyytiälä is primarily due to the lower emission rate of
the regional precursor vapors (e.g., Tunved et al., 2006), also
leading to the lower observed NPF event frequencies (Kyrö
et al., 2014; Neefjes et al., 2022). We must note that the
Hyytiälä data spanned 3 years, containing more data points
for model training, whereas the Värriö data only covered the
period from April to August 2019, excluding the entire cold
season, when H2SO4 concentrations are significantly lower
than those during the warm season (Jokinen et al., 2022). As
a result, our models 3 (Fig. 3a3, b3, c3) and 4 (Fig. 3a4,
b4, c4) can predict J5 for boreal forest environments at a
satisfactory level, including the possibility of using the es-
timated H2SO4 concentration from proxies as input. Never-
theless, limitations regarding the precursor vapor production
rate could potentially influence the prediction accuracy.

4.1.2 Urban-influenced: Beijing and Budapest

In an anthropogenic-emission-dominated region such as Bei-
jing, the measured and modeled J5 are well-aligned around
the 1 : 1 line using model 3 (Fig. 3d3, e3, f3) and model 4
(Fig. 3d4, e4, f4). In Beijing, a polluted megacity, the
dominating precursor type has been found to be H2SO4–
amine clusters (Cai et al., 2021). As expected, the test-
ing result showed dramatic underestimations for Beijing us-
ing model 1, with only H2SO4 concentrations considered
(Fig. 3d1), whereas models 2 (Fig. 3d2) and 3 (Fig. 3d3)
yielded clearly enhanced J5 predictions, with relatively mi-
nor differences between models 2 and 3. These features are
consistent with the fact that, in addition to H2SO4, other va-
pors are also important to NPF and sub-5 nm particle growth
in Beijing and demonstrate that RH and CS together in our
parameterization determine in a complicated way the sources
and sinks of these vapors, the survival probability of sub-
5 nm particles, and the potential emissions of sub-10 nm pri-
mary particles from traffic. This study did not include amine-
related compounds in the formulas because the lack of mea-
sured NH3 data makes parallel comparisons difficult between
the sites chosen for model training.

For Budapest, a large European city, the underestimates in
the modeled J5 are not as much improved as they were for
Beijing when including RH or CS in the parameterization,
which is indicative of distinct particle formation pathways
between Beijing and Budapest, even though both sites repre-
sent urban background environments. On the one hand, it is
worth noting that including RH (model 2, Eq. 3) resulted in a
decrease in the correlation coefficients between the measured
and modeled J5 in Budapest from 0.54 to 0.46 (Table 3). This
suggests that the role of RH in the NPF process in Budapest
is less significant than the other chosen inputs, despite pre-
vious indications that high RH levels have a strong potential
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Figure 3. Modeled and measured J5 scatterplots in log-scale from four models using the testing dataset containing data from all sites at
hourly time resolution. The labels on the left side of the y axis are the site names. The subscripted label “SAprx” indicates that the input
H2SO4 concentrations were from H2SO4 proxies. The light-grey scatters are all data points from the testing dataset, and the colored scatters
on top of them indicate the results from the corresponding measurement site. The red diamonds are the binned daily medians to show the
temporal aggregation of the model performances on daily data. Overall, a daily scale presents excellent performances on model 4 for boreal
forest environments (a4, b4, c4), polluted cities (d4, e4), and an organic-vapor-dominated high-humidity region (h1–h3). The red solid lines
represent the linear fit on the binned hourly medians. The dashed line is the 1 : 1 line.
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Table 3. Summary of the overall and site-specific correlation coefficients (r) of the four models using the testing dataset. The numbers in
parentheses under the site names represent the count for the data points.

Models Slopes and r (robust linear fit), log scale

Hyytiälä Beijing Värriö Budapest Cyprus Manacapuru HyytiäläSA BeijingSA Overall
(1642) (501) (248) (109) (34) (40) (797) (164)

Slope

1 0.43 0.33 0.32 0.58 0.35 0.04 0.34 0.07 0.30
2 0.62 0.57 0.40 0.66 0.48 0.15 0.57 0.23 0.58
3 0.48 0.43 0.32 0.85 0.37 0.18 0.42 0.12 0.64
4 0.25 0.28 0.12 0.48 0.17 0.24 0.28 0.12 0.62

r

1 0.43 0.30 0.44 0.54 0.42 0.04 0.41 0.004 0.55
2 0.47 0.32 0.47 0.46 0.49 0.19 0.48 0.07 0.69
3 0.37 0.30 0.35 0.61 0.38 0.21 0.36 0.02 0.71
4 0.31 0.22 0.18 0.51 0.37 0.46 0.33 0.09 0.78

to suppress NPF during non-event days in Budapest (Salma
et al., 2021), even though the RH values in Budapest were
considerably higher than those in Beijing (Table S2). On the
other hand, including CS (model 3, Eq. 4) in addition to RH
(model 2, Eq. 3) leads to an increase in the correlation coef-
ficients between the measured and modeled J5 from 0.46 to
0.61 (Table 3). We used both NPF and non-NPF days dur-
ing model training even though it was found that CS was
about 50 % higher during non-NPF events in Budapest than
the values during NPF events (Salma et al., 2016). As a re-
sult, it is difficult to determine whether the model’s perfor-
mance gain was entirely brought on by the addition of CS.
Otherwise, the results are all in line with the earlier indirect
evidence that chemical species other than H2SO4 influence
the particle growth and possibly NPF process in Budapest
(Salma and Németh, 2019). If one considers additional va-
pors other than H2SO4 for Budapest alone for J parame-
terization, one could include oxidation products of VOCs
originating from either urban vegetation emissions or traf-
fic emissions. For example, isoprene oxidation products can
be used to describe the inhibiting effect on NPF (Heinritzi et
al., 2020; Kiendler-Scharr et al., 2009), while monoterpene
oxidation products could enhance sub-3 nm particle growth
(Kulmala et al., 2013).

Based on the testing results, model 3 is more likely to
predict a more accurate J5 for Beijing based on the high-
est AIC ratio (except for model 1), while model 1 predicts
better for Budapest. Note the fact that J5 showed distinct
levels of measured J5 dependence with RH and CS in Bei-
jing and Budapest (J5 and RH – Beijing: r =−0.21, Bu-
dapest: r =−0.1; J5 and CS – Beijing: r =−0.02, Budapest:
r = 0.57; Fig. S1).

4.1.3 Mediterranean rural site: Agia Marina, Cyprus

For Cyprus, it appears that meteorology and condensation
sink terms have only minor effects on the formation of 5 nm
particles in such a rural environment under the influence of

marine vapors when comparing the results from the testing
dataset across the models (Fig. 3g). However, including RH
slightly improves the correlation between the modeled and
measured J5 as seen in model 2 (r increases from 0.42 to
0.49, Table 3). The reduced values of r in model 3 (Eq. 4)
indicate a somewhat reversed impact of CS on J5, which re-
quires additional examination as J5 and CS are weakly corre-
lated (r = 0.03, Fig. S1). The H2SO4 concentration showed
a low contribution to J5, with the exponent being less than
1 in model 4 (Table 3), which led to a more underestimated
modeled J5 compared to model 1 (Fig. 3g1, g4). This could
be an indication that potentially other anthropogenic, bio-
genic, or marine compounds make greater contributions to
the particle formation processes in Cyprus than H2SO4 (De-
bevec et al., 2018). Owing to the orographic conditions, the
air mass types approaching the Cyprus measurement site are
mixed, including the ones from northern Africa, marine envi-
ronments, Europe, and northwestern and southwestern Asia.
This results in the Mediterranean atmosphere in Agia Ma-
rina containing various vapors that could influence NPF. The
potential key contributors could include oxidation products
of dimethyl sulfide (DMS) originating from ocean plank-
ton emissions (Rosati et al., 2021), iodine oxidation prod-
ucts like HIO3 (He et al., 2021), the stabilizing agent NH3
(Jiang and Xia, 2017; Lan et al., 2021; Lehtipalo et al., 2018;
Yu et al., 2018), and oxidation products of VOCs from the
surrounding pine forests and oaks under favorable meteoro-
logical conditions (Debevec et al., 2018).

We should note that the measurements in Cyprus covered
only 2 weeks in springtime, which limited our quantitative
observations in model training for other seasons compared
to sites with long-term measurements. Based on the findings
above, model 1 seems to be the most suitable functional form
for the prediction of J5 in Cyprus.
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4.1.4 Amazonian basin: Manacapuru, Brazil

The measured and modeled values of J5 from the Man-
acapuru site scatter around the 1 : 1 line in all the mod-
els (Fig. 3). Previous studies reported high RH levels year-
round at the measurement site near Manacapuru (Myers et
al., 2022; Zhao et al., 2022), which is expected to suppress
NPF frequency and lead to lower formation rates. We ob-
served such a suppression effect when taking RH into ac-
count, as shown by the increased correlation coefficients
from 0.04 to 0.19 (Table 3). Studies from Manacapuru sug-
gested that the epoxide vapors could be a potential precursor
vapor in particle formation because of anthropogenic influ-
ences (Paulot et al., 2009), while Xu et al. (2014) suggested
that the presence of epoxide vapors can enhance particle nu-
cleation when RH levels increase. We did not observe an ap-
parent improved model performance in model 3 when CS
is included, as r remained almost unchanged compared to
model 2 (Table 3). One factor to consider is that we did not
apply the hygroscopic growth factor when calculating CS
for Manacapuru to maintain the consistency of the training
dataset. However, the impact of RH on CS, particularly on
the actual particle surface area available for H2SO4 uptake,
seems to be significant for high-RH environments like Man-
acapuru (Myers et al., 2022). Another assumption could be
that, even with the high CS, it is still low enough to allow
sufficient precursor vapors contributing to NPF processes.

These current findings provide evidence for H2SO4 being
an effective enough precursor for the particle formation at
5 nm in the atmosphere of Manacapuru (model 1, Fig. 3h1).
However, the RH stabilization effect on H2SO4 is not nec-
essarily exerted, as RH remains at high values of around
89± 13 % regardless of whether it is measured during the
wet season or the dry season (Myers et al., 2022). With these
observations, model 1 with a focus on the H2SO4 concen-
trations manages to predict J5 well for a biogenic-vapor-
dominated environment like Manacapuru.

4.2 Tracer Model 5 simulation

We simulated the PNSD in the EC-Earth global chemistry
transport model TM5-MP (Tracer Model 5, massively paral-
lel version; details can be found in the Supplement) by ap-
plying it with our J5 models 1 and 4. Together, we compared
our simulation results with the acid–organic vapor binary ho-
mogeneous nucleation model of Riccobono et al. (2014):

JRiccobono = km×[H2SO4]
p
×[BioOxOrg]q , (8)

where km= 3.27× 10−21 cm6 s−1, p= 2, and q = 1.
The details of the 14 tested measurement stations are

shown in Table S7. Note that the data from these 14 stations
are independent of any training or testing datasets used in
the previous sections of this paper. Here, we essentially com-
pared the simulated and measured PNSDs in three particle
modes (nucleation, Aitken, and accumulation) from the en-

tire year of 2018 to assess the simulation accuracy among
global environments.

Figure 4 shows the comparisons of PNSDs between the
on-site measurements and the TM5-MP simulations. For
biogenic environments, simulations using model 4 show
the particle number size distribution closest to the mea-
sured ones, particularly in Aitken-mode particles, promoting
the sulfuric-acid-based nucleation mechanism involving the
source–sink meteorology, even for environments dominated
by biogenic vapors. For the Arctic region, particle concentra-
tions simulated by model 4 are overestimated overall, while
model 1 simulation shows better alignment of particle num-
ber concentrations around the Aitken mode. This might indi-
cate that the nucleation process has a lower dependence on
the variations of meteorology than we expected. For coastal
environments, even though Utö (Baltic Sea island) and La
Réunion (Southern Hemisphere island) are located in dif-
ferent hemispheres and have different geographical settings,
the nucleation mechanisms from models 1 and 4 both show
similar predictions of particle concentrations across parti-
cle modes, with larger underestimation in the accumulation
mode for model 1. This once again validates the source–sink
meteorology mechanism in model 4. By observing the ratio
between the simulated and measured particle number con-
centrations, we can quickly see that the sulfuric-acid-based
particle formation mechanisms with (model 4) or without
(model 1) meteorology inputs have successfully narrowed
the gap between the simulations and observations across all
of the particle modes, with significant improvements for the
nucleation mode (Fig. 5). The “Total” contains the simu-
lated / measured particle number concentration ratio from all
of the particle modes, and it is clearly seen that applying
model 4 improves the overall global PNSD simulation com-
pared with the sulfuric acid–organic vapor binary model of
Riccobono et al. (2014). This observation shows that includ-
ing the RH and CS is needed for better understanding of the
global particle number size distributions.

5 Conclusion

The particle formation rate is one of the key characteristics
in new particle formation studies. By utilizing distinct field
measurement data, we can model the particle formation rate
and estimate the overall atmospheric aerosol budget over dif-
ferent environments. We parameterized J5 in four functional
forms using the combined datasets from six environments,
covering boreal forests (Hyytiälä and Värriö), urban sites
(the megacity of Beijing and the large European city of Bu-
dapest), and rural environments (Cyprus and Manacapuru).
The particle formation schemes involve the main precursor
vapor H2SO4, relative humidity (RH), and a condensation
sink (CS). Due to the small number of parameters and the
diversity of environments included to generate the schemes,
the roles of RH and CS are related not only to their poten-
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Figure 4. Environment-specific TM5-MP-simulated particle number size distribution from 2018 in annual medians. Biogenic sites include
rural and regional background environments (Hyytiälä, Waldhof, Melpitz, K-Puszta, and Birkenes). Coastal sites cover islands in the Baltic
Sea and in the Indian Ocean in the Southern Hemisphere close to Madagascar (Utö and La Réunion). The Arctic sites are two Finnish sites
both situated within the Arctic Circle (Pallas and Värriö). The urban site is represented by the Spanish city of Montseny.

Figure 5. Ratio of simulated and measured particle number concen-
trations from the 14 global sites from TM5-MP simulations in three
nucleation settings (Riccobono, model 1, and model 4), resulting in
three particle modes (nucleation, Aitken, and accumulation) in 2018
annual medians. The black line represents “ratio= 1” as a reference
line. The “Total” represents the overall ratio between the simulation
and the measurement particle number concentrations from all of the
modes.

tial direct impact on J5, but also sources and sinks of vapors
other than H2SO4 contributing to the formation and growth
of sub-5 nm particles and potential emissions of sub-10 nm
particles, e.g., from traffic. Overall, our models showed im-
proved performances as RH and CS were taken into consid-
eration. The model evaluations may suggest that the particle
formation mechanism is more sensitive to certain factors in
specific environments. Sulfuric acid is an effective precursor
vapor in NPF processes for most of the measurement sites
we selected for model training. Nevertheless, relying solely
on H2SO4 generally resulted in a weaker model performance
for environments where the NPF schemes are dominated by
biogenic emissions. This suggests that, to develop globally
applicable particle formation rate models, more precursor va-
por types need to be included alongside H2SO4.

The purpose of the paper is twofold: first, to address the
lack of knowledge regarding global particle formation rates
for particles at 5 nm and larger, and second, to provide a
globally applicable semi-empirical parameterization for the
sulfuric-acid-based neutral particle formation. The simplic-
ity of the parameterization is demonstrated by three factors.
First, NPF is a widespread occurrence in various types of en-
vironments, where the characteristics of particle formation
share common mechanisms involving major precursor types
and environmental factors. Second, the main input H2SO4
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concentration data can be obtained from field measurements
or proxies, from which the contribution of H2SO4 to NPF
can be directly compared among global sites. Third, we skip
the microphysics complexity of sub-5 nm particles, where
the physical and chemical properties differ significantly from
those that are above 5 nm when discussing particle formation
and growth.

The limited data availability from certain sites (less than
1 year), such as Budapest, Cyprus, and Manacapuru, should
be noted when applying our models. Conclusions drawn
from these sites can be more confidently applied to the spe-
cific seasons covered in the model training, such as spring
being more representative of Budapest and Cyprus and sum-
mer to early fall being more representative of Manacapuru.

Overall, our parameterization findings show that our mod-
els including H2SO4 concentration, RH, and CS can pre-
dict J5 at a satisfactory level for various environment types
at once. Among the tested models, models 3 and 4 (Eqs. 4
and 5) can be utilized to predict J5 on a global scale if
(1) the H2SO4 concentrations are known, whether through
field measurement or proxies; (2) the meteorology parame-
ter RH is monitored continuously; and (3) the particle num-
ber size distributions are sufficient and assessed to yield CS.
Some caution should be maintained when utilizing these
models for environments with very low RH and/or high CS,
especially if the high CS is related to primary particle emis-
sions, as the associations between these model parameters
and J5 are complicated and multifaceted. While the parame-
terizations presented in this study offer an improvement over
previous approaches, further development is needed to incor-
porate vapors important for NPF, such as iodine oxo-acids,
particularly in marine environments.
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