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Abstract. Accurate global estimates of accumulation-mode particle number concentrations (N1qp) are essential
for understanding aerosol—cloud interactions and their climate effects and for improving Earth system models.
However, traditional methods relying on sparse in situ measurements lack comprehensive coverage, and indirect
satellite retrievals have limited sensitivity in the relevant size range. To overcome these challenges, we apply
machine learning (ML) techniques — multiple linear regression (MLR) and eXtreme Gradient Boosting (XGB)
— to generate daily global N fields using in situ measurements as target variables and reanalysis data from
the Copernicus Atmosphere Monitoring Service (CAMS) and ERAS as predictor variables. Our cross-validation
showed that ML models captured Nigp concentrations well in environments well-represented in the training set,
with over 70 % of daily estimates being within a factor of 1.5 of observations. However, performance declines in
underrepresented regions and conditions, such as in clean and remote environments, including marine, tropical,
and polar regions, underscoring the need for more diverse observations. The most important predictors for Nygp in
the ML models were aerosol-phase sulfate and gas-phase ammonia concentrations, followed by carbon monoxide
and sulfur dioxide. Although black carbon and organic matter showed the highest feature importance values, their
opposing signs in the MLR model coefficients suggest that their effects largely offset each other’s contributions
to the Njgo estimate. By directly linking estimates to in situ measurements, our ML approach provides valuable
insights into the global distribution of Njgp and serves as a complementary tool for evaluating Earth system

model outputs and advancing the understanding of aerosol processes and their role in the climate system.

1 Introduction

Accumulation-mode particles are aerosol particles ranging
from 100 to 1000 nm in diameter. They can be emitted di-
rectly in this size range from various natural and anthro-
pogenic sources or form through the growth of particles ei-
ther emitted in smaller sizes or formed by atmospheric new
particle formation (e.g., Morawska et al., 1999). In the at-
mosphere, accumulation-mode particles play a critical role
in the climate due to their influence on cloud properties and
their interaction with atmospheric radiation (Forster et al.,
2021).

Cloud formation occurs when an air mass becomes su-
persaturated, leading to the condensation of water vapor on
aerosol particles known as cloud condensation nuclei (CCN),
forming cloud droplets (Boucher et al., 2013). Whether a
particle can act as CCN at a given supersaturation depends
on its composition and size (e.g., McFiggans et al., 2006;
Andreae and Rosenfeld, 2008). Particles around 100 nm in
diameter are generally large enough to activate as CCN un-
der typical atmospheric conditions regardless of their chem-
ical composition (Dusek et al., 2006; Kerminen et al., 2012;
Pohlker et al., 2021), making the number concentrations of
accumulation-mode particles a good estimate for CCN-active
particles. Aerosol particles can influence the radiative budget
in both direct and indirect ways. The number concentration
of CCN-active particles affects the cloud’s properties, for ex-
ample, cloud albedo, cloud liquid-water path, cloud lifetime,
and precipitation properties (e.g., Twomey, 1977; Albrecht,
1989; Forster et al., 2021; Stier et al., 2024). Additionally,

Aerosol Res., 3, 589-618, 2025

because aerosol particles alter the transmittance of radiation
in the atmosphere, they can modify the atmospheric tempera-
ture profile, impacting the evaporation and condensation pro-
cesses in the clouds (Forster et al., 2021). Due to the com-
plexity of these interactions, aerosol-cloud interactions re-
main the largest source of uncertainty in the radiative forcing
estimates and future climate projections (Forster et al., 2021).

Understanding the global distribution of accumulation-
mode particle number concentrations is essential for improv-
ing our understanding of CCN and, therefore, aerosol-cloud
interactions. For example, to reliably assess aerosol effects
on clouds, global CCN concentrations need to be captured
within a factor of 1.5 of their true values (Rosenfeld et al.,
2014). However, obtaining such accuracy with measurements
on a global scale is challenging. Although in situ measure-
ments of both CCN and accumulation-mode particle number
concentrations are available and crucial for understanding
spatial variation, they have limited spatial and temporal cov-
erage (Rosenfeld et al., 2014; Schmale et al., 2018). As are-
sult, global observations rely heavily on satellite remote sens-
ing, which introduces its own set of challenges (e.g., Rosen-
feld et al., 2014; Bellouin et al., 2020; Quaas et al., 2020).
For example, satellites cannot directly observe the aerosol
particle number concentrations. Instead, they often rely on
indirect retrievals, like radiation extinction-related variables
such as aerosol optical depth (AOD) or aerosol index (AI).
Inferring number concentrations from these retrievals is chal-
lenging because they relate to the entire columnar burden of
particles in the atmosphere and are sensitive to other vari-
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ables, including relative humidity and aerosol particle size.
Moreover, satellites cannot detect aerosol loadings beneath
clouds, making it difficult to obtain data under the conditions
where these measurements would be most needed.

Accumulation-mode particle and CCN number concentra-
tions also pose challenges for Earth system models (ESMs).
Accurately modeling aerosol growth from small particles
to the accumulation-mode size range requires detailed nu-
merical descriptions of complex aerosol dynamics within
ESMs (Blichner et al., 2021). This task is both challenging
and computationally expensive, leading to simplified physi-
cal representations in ESMs, adversely affecting their accu-
racy. Many ESMs employ bulk mass aerosol schemes with-
out direct particle number concentration calculations (e.g.,
Yu et al., 2022). If particle number size distributions are
represented in the ESMs, they are typically described with
modal aerosol schemes, where distributions are represented
by several log-normal modes (e.g., Mulcahy et al., 2020;
Blichner et al., 2021; van Noije et al., 2021). However, this
method involves a priori assumptions about the size distri-
bution that often inaccurately reflect the true size distribu-
tions and thus alter the flow of particles growing from one
mode to another (Blichner et al., 2021; Bergman et al., 2012;
Korhola et al., 2014). These issues can be avoided by using
sectional schemes, where size distributions are represented
by size bins, but these are more computationally expensive
(Blichner et al., 2021).

Given the challenges of directly measuring accumulation-
mode particle and CCN concentrations, as well as the limita-
tions of the ESMs, there is a clear need to develop alternative
estimation methods. One such method is the recent work by
Block et al. (2024), who derived global CCN concentrations
using aerosol mass mixing ratios from CAMS reanalysis data
(CAMS data are discussed further in Sect. 3.2). These aerosol
mass concentrations, constrained by satellite-retrieved AOD,
were converted into aerosol number size distributions based
on estimated size distributions for each aerosol species. They
then applied modified kappa—Kohler theory to calculate the
number of particles that activate into CCN at specific su-
persaturation levels. Their approach provides valuable in-
sights into global CCN concentrations at different supersatu-
rations, constrained by the satellite observations assimilated
into CAMS reanalysis data. However, it does not incorpo-
rate direct CCN or particle number measurements and relies
solely on CAMS reanalysis data.

Nair and Yu (2020) presented an alternative approach uti-
lizing machine learning (ML) to estimate CCN concentra-
tions. They selected 46 sites across the globe and employed
a chemical transport model to calculate CCN concentrations
along with various predictors, including aerosol, chemical,
and meteorological variables at these locations. This dataset
formed the basis for training a random forest regression
model, which was then evaluated using CCN observations
from the Southern Great Plains (USA) measurement sta-
tion. Although the method relied primarily on modeled CCN
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concentrations and predictors, it demonstrated the potential
of ML techniques for estimating aerosol number concentra-
tions. A follow-up study utilized a similar approach and es-
timated particle number concentrations (diameters of 1.2—
120 nm) using a random forest regression model (Yu et al.,
2022).

Another machine learning application that has gained pop-
ularity in atmospheric sciences in recent years is extend-
ing observations from measurement stations to larger geo-
graphic areas. This method has been quite commonly em-
ployed for estimating PM3 5 and other air pollutant concen-
trations across local and regional scales (e.g., Ma et al., 2019;
Di et al., 2019; Kim et al., 2021; Wang et al., 2022, 2023;
Yu et al., 2023). Some methods focus on extrapolating mea-
surements using solely the target measurements from mea-
surement stations with no additional predictors. For exam-
ple, Ma et al. (2019) utilized a neural-network-based spatial—
temporal extrapolation method to estimate PMj 5 concentra-
tions in the state of Washington (USA). However, in most
cases, the ML models are trained to estimate the concen-
trations based on a range of widely available variables, in-
cluding other air quality measurements, meteorological data,
satellite retrievals, geographical and land use information, re-
analysis datasets, and outputs from chemical transport mod-
els.

In this study, we employ ML techniques to bridge the gap
between localized in situ measurements of accumulation-
mode particle concentrations and the global scale. We train
two ML models — a multiple linear regression model and an
eXtreme Gradient Boosted model (described in Sect. 2.1) —
using in situ measurements of Njqo as the target variable and
reanalysis variables from the CAMS and ERAS datasets as
predictors (described in Sect. 3). These models generate daily
number concentration fields for particles with dry diameters
larger than 100 nm (Njgp). Sect. 4 details our methods for
training the ML models and assessing the model performance
both at the measurement stations and outside of them. Once
trained, we use these ML models to generate daily global
Nigo fields Nygg for 2013. We also investigate the reliability
of the global ML models across different regions based on
the influence predictor variables have on the models and how
the multiple linear regression (MLR) and eXtreme Gradient
Boosting (XGB) model fields differ.

2 Background on machine learning methods

This section contains a brief overview of the methods and the
two different ML models we used in this study to estimate
Nigo. Further reading on these methods can be found, for
example, in Kuhn and Johnson (2013). The more detailed
description of how we applied these techniques is in Sect. 4.
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2.1 ML models

Multiple linear regression (MLR) is a simple yet effective
method that extends ordinary least squares regression to
model the relationship between multiple predictor variables
and a single target variable (e.g., Kuhn and Johnson, 2013).
It assumes a linear relationship between the set of predictors
and the target. The MLR model finds a linear equation con-
sisting of coefficient terms for each predictor variable and
a constant term (intercept) to minimize the sum of squared
residuals between the predicted and observed values.

The method of eXtreme Gradient Boosting (XGB) com-
bines a tree-based ensemble method with gradient boosting
(Chen and Guestrin, 2016). In simple terms, XGB trains se-
quentially weak predictive estimators (decision trees) that, at
each step, aim to correct the errors of the previous estimators.
The final estimate is calculated as the sum of the decision tree
estimates. The number of trees can typically be between 100
and 1000. XGB is used for both regression and classification
tasks. Here, we used it for regression with the squared error
as the loss function.

We chose these two ML models because they complement
each other well. MLR is a simple, interpretable model that
provides insights into the relationships between predictors
and the target variable through the coefficients. It can also
extrapolate beyond the range of values in the training data,
at least if the relationship with the target variable and the co-
variates is linear. In contrast, XGB is well-suited to complex,
non-linear data and interactions but is more computationally
intensive and difficult to interpret. XGB is also more lim-
ited in its ability to extrapolate beyond the range of values in
the training data as it predicts constant values far outside the
training data. By using both MLR and XGB, we can compare
two fundamentally different ML methods. The differences in
the estimates produced by the ML models may shed light on
the global ML model performance, which is otherwise diffi-
cult to assess.

2.2 ML training and evaluation process
2.2.1 Training, validation, and holdout sets

A typical supervised learning process, such as regression, as
discussed here, involves two main steps: model training and
performance evaluation. A portion of the full dataset, called
the training set, is used to train the model. During training,
the model learns from both the target and predictor variables
in the training set, adjusting its internal parameters to capture
their relationship.

Once the model is trained, its performance is evaluated
with a portion of the full dataset that is separate from the
training set. In the testing phase, the trained model receives
only the predictor variables and generates estimates for the
target variable. These estimates are then compared against
the observed target values to assess model performance. To
prevent data leakage and ensure reliable model performance
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assessment, the datasets used for training and testing the
model must remain independent.

To maintain the independence of the datasets used for
training and testing the model, the model performance of
the final ML model is typically evaluated with a dedicated
dataset called the holdout set. This subset of the full dataset
is set aside from the training data at the beginning of the anal-
ysis and is reserved solely for testing the final ML model at
the end of the analysis. The allocation of data between train-
ing and holdout sets depends on the specific application. This
includes how many data are assigned to each set and which
data points are selected for training versus testing. When data
are limited, allocation must be done carefully to ensure that
both sets remain representative. In some cases, it may be
preferable to forgo data splitting and to train the model on
all available data. In these cases, resampling methods such
as cross-validation (CV) can be used to evaluate model per-
formance using only the training data.

2.2.2 K-fold cross-validation

In CV, the original training set is further divided into smaller
groups, namely a new training set and a validation set, the lat-
ter of which is now used to evaluate the model performance.
We used two types of CV, k-fold CV and spatial CV.

K -fold CV involves dividing the original training set into
k groups. One group serves as the validation set, while the
remaining groups form the new training set. The model un-
dergoes training and testing iteratively, rotating through each
group. The process yields k performance values, and the av-
erage of these values is utilized to evaluate the model’s per-
formance. The benefit of using CV is that each data point can
be used both to train the model and to test its performance
while maintaining the separation between the sets to ensure
reliability.

Given the spatial structure of our dataset, we comple-
mented traditional k-fold CV with spatial CV. In spatial CV,
folds are defined based on geographical information (e.g.,
Cho et al., 2020; Beigaité et al., 2022) — in our case, by mea-
surement station. Because data from the same location are
autocorrelated, including a station’s data in both the training
and validation sets can lead to overly optimistic performance
estimates. Spatial CV mitigates this issue by ensuring greater
independence between folds because the target station’s own
data are not used in training.

2.2.3 Model optimization

CV is also used for model optimization, a step prior to
training the final model. This phase involves fine-tuning the
model to enhance its performance of the specific task. In our
case, optimization included feature selection and hyperpa-
rameter tuning.

Feature selection refers to selecting a subset of predictor
variables (also known as features) for the ML mode. If the
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dataset contains predictor variables that correlate with each
other, having multiple variables with similar information is
redundant. It can also cause overfitting, where the model be-
comes too tailored to the training data and performs poorly
on unseen data, making the models less generalizable. The
best practice is selecting only the relevant variables.

Hyperparameters (HPs) are user-defined parameters that
control the complexity of the model. Increasing complexity
can improve the performance on the training data, but it also
increases the risk of overfitting. Tuning HPs is essential to
find the right balance between model complexity and gener-
alization ability. MLR does not require HPs in its basic form,
while XGB involves several important HPs, such as the num-
ber of trees, tree depth, learning rate, and regularization pa-
rameters (XGBoost Developers, 2022). To optimize the HPs,
we employed grid search, which is a commonly used brute-
force method where each hyperparameter is given a range of
manually selected values, following which the search iterates
over all possible combinations. The search can be repeated
multiple times, focusing only on a subset of hyperparame-
ters or using narrowing ranges of values based on previous
rounds. We evaluated the performance of each hyperparam-
eter combination using CV and selected the combinations
that yielded the best average performance over the validation
folds.

2.2.4 Model performance metric

For the performance metric, we used the root mean squared
error (RMSE) between the log;o-transformed observed N1gp
values and the logjo-transformed estimated Njpo values
(RMSE]qg,,). We used logjo-transformed Njop values in our
analysis because we were interested in capturing the correct
order of magnitude rather than the exact Ngo values. Addi-
tionally, RMSE is scale-dependent, resulting in higher errors
for higher Njgg values. Logjo transformation mitigates this
issue.

The RMSEjog,, calculated using the training set is referred
to as the training error, and the RMSEjqg 0 calculated with a
separate holdout set is referred to as a testing error. A low
RMSE]qg,, indicates good performance, whereas higher val-
ues indicate poorer performance. In this study, we consid-
ered the model performance with RMSE]ng below 0.2 to be
excellent (at least 70 % of the estimated values were within
a factor of 1.5 in relation to the observed values, i.e., be-
tween the observed value divided by a factor of 1.5 and the
observed value multiplied by a factor of 1.5), values below
0.3 to be good (at least 50 % of the estimated values were
within a factor of 1.5 in relation to the observed values), and
values above to be 0.3 poor (below 50 % of the estimated
values were within a factor of 1.5 in relation to the observed
values).
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2.2.5 Feature importance

Interpreting the ML model involves assessing the importance
of each variable (also known as features). The estimation of
feature importance differs between MLR and XGB models.
In MLR models, importance is determined by the coefficients
of the variables. When variables have a similar range of val-
ues or are scaled, the absolute value of a coefficient indi-
cates its importance, and the sign (positive or negative) shows
whether an increase in the variable leads to an increase or
decrease in Njgg. In contrast, XGB models do not have a
straightforward method for estimating variable importance;
instead, they provide various approaches (XGBoost Develop-
ers, 2022). We used the gain method, which evaluates impor-
tance based on the accuracy improvement in a branch when
a variable is included (XGBoost Developers, 2022).

3 Data description and processing

3.1 Measured N1qg (target variable)

The dataset contained ground-level in situ Njgp measure-
ments from 35 measurement stations worldwide (Fig. 1). De-
pending on the station, the measurements were performed
with either a differential mobility particle sizer (DMPS)
(Aalto et al., 2001) or a scanning mobility particle sizer
(SMPS) (Wiedensohler et al., 2012). The dataset contained
sub-hourly Njgp calculated from the number concentration
of particles between 100nm and the upper limit of the
measurement instrument, which varied between 400 nm and
1000 nm (Table 1). Because the number concentration of
accumulation-mode particles is typically dominated by par-
ticles with diameters well below 400 nm (Leinonen et al.,
2022), it is very unlikely that the differing upper limits have
a notable impact on our results. Further descriptions of each
station, the measurement instrument used, and references are
in Table 1.

We separated the measurements into training and hold-
out sets based on temporal division (discussed further in
Sect. 4.1). The training set contained observations from
2003 to 2019, with the specific measurement periods and
data availability varying across stations (Fig. 2). The short-
est available time series covered 201d, while the longest
extended over 6182d, altogether comprising 49490 data
points. The holdout set contained Njgp measurements for
2020-2022. For this time period, we had data from fewer sta-
tions, covering only a subset of European stations with, alto-
gether, 9587 data points. The data availability of this testing
dataset can be seen in Fig. S1 in the Supplement.

We processed the Njgp measurement data by first ensur-
ing all timestamps were in UTC time and then calculating
daily averages. To address outliers likely caused by measure-
ment errors, we removed values outside three standard devi-
ations from the station’s mean. The observed Njgg concen-
trations ranged from a few particles per cubic centimeter to

Aerosol Res., 3, 589-618, 2025
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Figure 1. Map of measurement stations. Panel (a) shows the map, and panel (b) shows a zoom-in on Europe. The numbers refer to stations

as listed in Table 1.

Station

1. ALE (CAN)

2. SGP (USA)

3. EGB (CAN)
4. SAO (BRA)

5. AMA (BRA)

6. BOT (RSA)

7. MAR (RSA)

8. MHD (IRL)

9. HRW (GBR)
10. VAR (FIN) A

11. HYY (FIN)
12. HEL (FIN) 4

13. ASP (SWE)

14. VHL (SWE)

15. PRL (LTU)

16. VIE (BEL)
17. BSL (GER) A
18. WAL (GER) A

19. NEU (GER)

20. MLP (GER)

21. ABZ (GER)

22. SCH (GER)

23. HPB (GER)

24. KCE (CZE)
25. KPZ (HUN)

26. POV (ITA)

27. FKL (GRE)

28. AMM (JOR)

29. HAD (SAU)

30. UAE (UAE)

31. DEL (IND)
32. MUK (IND)
33. BEI (CHN) 1

34. NAN (CHN)

35. ZOT (RUS)

2004-01-01

2008-01-01

2012-01-01
Date

2016-01-01 2020-01-01

Figure 2. The temporal data availability of N1gg measurements at different stations in the training set. The station numbers and abbreviations

correspond to Table 1.
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tens of thousands of particles per cubic centimeter. Because
the Njgp concentrations show roughly a log-normal distribu-
tion and because our aim was to capture the correct order of
magnitude rather than exact Njgo values, we employed logig
transformation for Nqo.

3.2 Reanalysis data (predictor variables)

Reanalysis data make up a gridded dataset created by assimi-
lating observations from various sources, such as in situ mea-
surements and satellite retrievals, into a numerical weather
prediction model. In this study, we used reanalysis variables
collected from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) “CAMS global reanalysis (EAC4)” dataset (In-
ness et al., 2019a, b) and the “ERAS hourly data on sin-
gle levels from 1940 to present” dataset (Hersbach et al.,
2023). Both datasets are generated by the European Centre
for Medium-Range Weather Forecasts using the Integrated
Forecasting System (IFS) model for numerical weather pre-
diction. CAMS provides global datasets for past atmospheric
composition with 3-hourly time resolution and 0.75 x 0.75°
spatial resolution. ERAS5 offers global datasets for numer-
ous atmospheric variables at an hourly time resolution and
0.25 x 0.25° spatial resolution.

The list of reanalysis variables used as predictors is pro-
vided in Table 2. Most variables were sourced from the
CAMS dataset, while boundary layer height (BLH) was ob-
tained from the ERAS dataset. The selected reanalysis vari-
ables are known to influence Njgg either directly or indi-
rectly. The variables with a direct influence relate to primary
emissions in the Njgg size range (black carbon, organic mat-
ter in terms of primary organic matter, sulfate aerosol, the
smallest size ranges of dust and sea salt aerosol) and their
sinks (rain). The variables with an indirect influence either
contribute to secondary aerosol formation and, thus, parti-
cle growth into the Njqp size range (sulfur dioxide, ammonia
nitrogen monoxide or dioxide, terpenes, isoprene, organic
matter in terms of secondary organic aerosol, temperature,
relative humidity), affect their transportation and dilution, or
indicate general exposure to combustion and biomass burn-
ing in the air masses (wind speed, BLH, carbon monoxide).
Many of these variables can be related to multiple processes
affecting N1gg concentrations, as discussed in Sect. 5.2.1.

Reanalysis variables served as predictors in the training
and holdout sets. In these sets, we collocated the reanalysis
data to the Njgp measurements by using values interpolated
to the point of the measurement station and including only
days with observations. For the training set, we selected ob-
servations from the period of 2003-2019 and, for the holdout
set, observations from the period of 2020-2022. However,
the average conditions within a grid cell (up to around 80 km)
and even the interpolated values may sometimes fail to rep-
resent the single-point measurements due to sub-grid-scale
variability in emission sources, meteorology, and topogra-
phy. For example, if a measurement station is located near
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strong sources or within a limited high-emission area, such
as a city, the grid cell average in the reanalysis data may un-
derestimate concentrations due to dilution over a larger area.
We discuss the possible effects of these and other CAMS-
variable-related uncertainties in Sect. 5.3 and 5.4.

In addition to the training and holdout sets, we used re-
analysis data as input for generating the global Nyqo fields,
retrieving the reanalysis data covering the whole globe at a
0.75 x 0.75° resolution for 2013. We chose this year because
it had the best availability of observational data for assessing
model performance.

For the global fields, we first adjusted the 0.25 x 0.25° res-
olution of the ERAS dataset to match the 0.75 x 0.75° reso-
lution of the CAMS dataset by calculating grid cell averages
that correspond to the CAMS data grid size. The rest of the
analysis proceeded in the same way for all sets. We calcu-
lated daily averages for the variables. Additionally, we de-
rived two variables from CAMS data: 2 m relative humidity
(RH) and 10 m wind speed (WS). RH was computed from the
dew-point temperature and air temperature at 2 m height us-
ing the approximation of Alduchov and Eskridge (1996) for
saturation vapor pressure. WS was calculated from the 10 m
u component and 10 m v component of wind.

Finally, we normalized the reanalysis variables that fol-
lowed a log-normal distribution by logj transforming them
(Table 2). Some of the variables had minimum values at zero,
and, before logjo transforming, we replaced these with the
next smallest value of the variable. Additionally, if the logio-
transformed value was very low compared to the rest of the
values (e.g., 10727), we shifted the minimum value to 1017,
This increase in the minimum value was necessary because
we noticed that, in situations when the predictor values were
extremely low compared to typical predictor values, it led the
MLR model to generate unphysically low Njgo estimates.

4 Designing and applying training and testing
procedures

In this section, we detail how the ML methods described in
Sect. 2 were applied in our training and testing process for
the ML models. The primary aim of this study was to train
global ML models using limited observational data to es-
timate Njgp concentrations in areas without measurements.
The challenge is not training the global ML models but as-
sessing their performance and reliability outside the mea-
surement stations, which cannot be done with our limited
holdout set. Therefore, we designed a methodology incorpo-
rating cross-validation and intermediate ML model versions.
Although we developed this approach for our specific data,
it can be applied to other scientific questions in atmospheric
and other fields of science, with similar challenges related to
limited spatial observations.
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Table 1. List of measurement stations included in this study and their information, including the station number used to identify stations in the figures (No), station full name and
country, the abbreviation used in the text, coordinates (latitude, longitude) and altitude above sea level in meters, station environment type, instrumentation, maximum diameter of the
measurement, and references. The measurements were conducted either with differential mobility particle sizer (DMPS) or scanning mobility particle sizer (SMPS).

No. Station Country Abbreviation Latitude Longitude  Altitude Environment Instrument Max. diameter  Site and

(mas.l.) type (nm) dataset

description

1 Alert Canada ALE 82.492 —62.508 75  Polar SMPS 500 Leaitch et al. (2013) €
2 Southern Great Plains ~ United States SGP 36.6 —-97.5 300 Rural SMPS 750  Marinescu et al. (2019) €
3 Egbert Canada EGB 44.2 —79.8 251 Rural SMPS 420 Pierce et al. (2014) ©
4 Sdo Paulo Brazil SAO —-23.6 —46.6 750  Urban DMPS 800 Backman et al. (2012) ©
5 Amazonas Brazil AMA —2.146 —59.006 130  Remote SMPS 430  Andreae et al. (2015) ©
6 Botsalano South Africa BOT —25.5 25.8 1400  Rural DMPS 844  Vakkari et al. (2013) ©
7 Marikana South Africa MAR —25.7 27.5 1170  Urban DMPS 844  Laakso et al. (2008) ©
8 Mace Head Ireland MHD 53.32 —9.88 10 Remote @ SMPS 470  O’Connor et al. (2008) €
9 Harwell England HRW 51.6 —1.3 126 Rural SMPS 450  Charron et al. (2007) ¢
10 Virrio Finland VAR 67.76 29.61 390 Remote DMPS 860 Harietal. (1994) ¢
11 Hyytidlda Finland HYY 61.85 24.29 181 Rural DMPS 1000  Hari and Kulmala (2005) ¢
12 Helsinki Finland HEL 60.2 24.96 26  Urban DMPS 1000  Jirvi et al. (2009) ©
13 Aspvreten Sweden ASP 58.8 17.38 25 Rural DMPS 400  Tunved and Strom (2019) €
14 Vavihill Sweden VHL 56.04 13.52 172 Rural DMPS 900 Kristensson et al. (2008) ©
15 Preila Lithuania PRL 55.55 22.0 5 Rural SMPS 840  Mordas et al. (2016) ©
16 Vielsalm Belgium VIE 50.3 6.0 496  Rural SMPS 800 ACTRIS (2024)
17 Bosel Germany BSL 53.0 7.95 17 Rural SMPS 800  Asmietal. (2011)94
18 Waldhof Germany WAL 52.8 10.76 75 Rural SMPS 800 UBA (2013)4
19 Neuglobsow Germany NEU 53.14 13.03 70  Rural SMPS 800 UBA (2013)4
20 Melpitz Germany MLP 51.53 12.9 87 Rural DMPS 800  Engler et al. (2007) 4
21 Annaberg-Buchholz Germany ABZ 50.57 12.99 545  Urban SMPS 800  Schladitz et al. (2015) 4
22 Schauinsland Germany SCH 4791 791 1205  Rural® SMPS 800 UBA (2013)4
23 Hohen-peissenberg Germany HPB 47.8 11.0 988  Rural® SMPS 800  Birmili et al. (2003) 4
24 Kosetice Czech Republic KCE 49.56 15.8 534  Rural SMPS 800 Zikové and Zdimal (2013) ¢
25  K-Puszta Hungary KPZ 46.97 19.55 125  Rural DMPS 1000 Yli-Juuti et al. (2009) €
26 Po Valley Italy POV 44.65 11.62 10 Rural DMPS 600 Hamed et al. (2007) €
27 Finokalia Greece (Crete) FKL 35.2 25.4 250 Remote? SMPS 848  Kalivitis et al. (2015) €
28 Amman Jordan AMM 32.01 35.87 1000  Urban SMPS 420 Hussein et al. (2019) ©
29 Hada al Sham Saudi Arabia HAD 21.802 39.729 500 Rural DMPS 850 Lihavainen et al. (2016) ©
30 United Arab Emirates  United Arab Emirates UAE 25.23 55.98 165 Rural DMPS 800 Kesti et al. (2022) ©
31 Delhi India DEL 28.55 77.19 225  Urban SMPS 560  Gani et al. (2020) ©
32 Mukteshwar India MUK 29.47 79.65 2180 Remote DMPS 950 Hooda et al. (2018) ©
33 Beijing China BEIL 39.94 116.3 20 Urban DMPS 760  Liu et al. (2020) €
34 Nanjing China NAN 32.1 118.9 40  Urban DMPS 800 Qietal. (2015)°
35 Zotino Russia 70T 60.8 89.35 114 Remote DMPS 835  Heintzenberg et al. (2011)

3 Coastal site. ® Mountain site. ¢ Dataset reference: Nieminen et al. (2018). d Dataset reference: Birmili et al. (2016). © Dataset reference same as measurement site reference.
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Table 2. Information on the variables used in model training and testing. The table lists variable names, variable abbreviations, variable
units, model level of reanalysis data if applicable, and whether the variable was log( transformed. N1gg was obtained from measurements.
The other variables were from reanalysis data, with boundary layer height from the ERAS dataset and other reanalysis variables from CAMS
reanalysis data. Wind speed and relative humidity were calculated from CAMS variables. The reanalysis variables contained some single-
level variables, but most of the variables were multi-level variables, which we downloaded for model level 60, which is 10 m above ground

under standard atmospheric conditions.

Variable name Abbreviation  Unit Model level  logq transformation
Number concentration of particles larger than 100nm  Njgo cm™3 - yes
Hydrophilic organic matter aerosol mixing ratio OMp, phil. kg kg_1 60 yes
Hydrophobic organic matter aerosol mixing ratio OMp phob kg kg_1 60 yes
Hydrophilic black carbon aerosol mixing ratio BCh.phil kg kg_1 60 yes
Hydrophobic black carbon aerosol mixing ratio BCh.phob. kg kgf1 60 yes
Sulfate aerosol mixing ratio Sulfate kg kg_1 60 yes
Dust aerosol (0.03—0.55 pm) mixing ratio Dust kg kg_1 60 yes
Sea salt aerosol (0.03—0.5 um) mixing ratio Sea salt kg kg_1 60 yes
Carbon monoxide mixing ratio CcO kg kg_1 60 yes
Sulfur dioxide mixing ratio SO, kg kg*1 60 yes
Ammonia mixing ratio NH3 kg kg_1 60 yes
Nitrogen monoxide mixing ratio NO kg kg_1 60 yes
Nitrogen dioxide mixing ratio NO, kg kgf1 60 yes
Isoprene mixing ratio CsHg kgkg™ 60 yes
Terpenes mixing ratio CioHie kg kg_1 60 yes
Boundary layer height BLH m Single level  no
Specific rain water content mixing ratio SRWC kg kg_1 60 yes
Air temperature at 2 m height T K Single level  no
Dew point temperature at 2 m height Ty K Single level  no
10m u component of wind U ms! Single level no
10 m v component of wind % ms—! Single level no
10 m wind speed Wind speed ms~! - yes
2 m relative humidity RH % - no

4.1 Training and holdout sets and their limitations

As described in Sect. 3, we allocated the training and holdout
sets based on temporal selection using data from the period
of 2003-2019 for training the models and data from the pe-
riod of 2020-2022 for assessing model performance. This
division was chosen because 84 % of measurements in our
dataset were collected during 2003-2019. Training ML mod-
els that can be applied globally required a training set that
represented diverse environments and meteorological condi-
tions, ideally covering several seasonal cycles at each loca-
tion to provide reliable analysis. However, as is often the case
in atmospheric sciences, most stations did not have long ob-
servational series. Given these constraints, we prioritized the
training set robustness over the holdout set representative-
ness and chose to include only stations with 2020-2022 data
for the holdout set. This approach also allowed us to inves-
tigate temporal extrapolation, where we assessed model per-
formance at the measurement stations but outside the time
period used in training.

The presented train—test split had certain limitations. In ad-
dition to excluding many of our measurement stations, the
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holdout set could not assess global ML model performance
outside the locations used for training. This drawback was
crucial because our goal was not only to estimate Njgg at
the measurement stations (temporal interpolation and extrap-
olation) but also to evaluate how well the ML models could
predict values in completely new locations (spatial extrap-
olation). To properly assess spatial extrapolation, we would
need a holdout set containing additional stations with suffi-
ciently long time series from different environments. How-
ever, long time series of particle number size distributions
are not widely available, particularly outside Europe. There-
fore, ensuring a wide variety of measurement stations in both
training and holdout sets is challenging, and datasets from
any additional measurement stations would also improve the
training set.

4.2 Intermediate models for inferring global model
performance

To address the challenges our dataset posed with regard to
training and testing the ML models, we employed CV, which
allowed us to maximize data usage by utilizing each data

Aerosol Res., 3, 589-618, 2025



598

Table 3. Summary of the different intermediate model setups and their train—test splits.

A. Ovaska et al.: Machine learning estimates of accumulation-mode particle concentrations

Model setup

Purpose

Train—test split for cross-validation

XGB HP tuning (Sect. 4.3.4)

XGB HP tuning

Spatial train—test split: target station data are
used as the validation set, and the data from all
other sites are used as training data.

Single-station models
(Sect. 4.4.1)

Testing if ML models with reanalysis data can
capture observed Njgo

Temporal train—test split: data are divided into
4-week increments, with the first 2 weeks
being used in the training set; out of the last 2
weeks, the 3 first and 3 last days are discarded,
and the 8 d in between are used in the
validation set. Rotation of 4-week periods to
start from different weeks of the month.

Station-excluded models
(Sects. 4.4.2 and S3)

Cross-validation: estimating how the global
ML models may perform in environments and
conditions outside the existing measurement
stations

Spatial train—test split: target station data are
used as the validation set, and the data from all
other sites are used as training data. For
analyses that required a comparable number of
data points from all stations, the validation set
contained 200 data points with 50 data points
sampled per season (Sect. S3). For comparing
against station-included models, the validation
set included the same days as in the
station-included models below.

Station-included models
(Sect. 4.4.3)

Examining and illustrating how much of the
model uncertainty at the target station was
linked to the availability of training data in a
roughly similar environment or under similar
meteorological conditions compared to the

Combination of spatial and temporal train—test
split: the training data from other stations like
in station-excluded models combined with 2
weeks out of 4 weeks of target station data as
in single-station models. Validation set of 8§ d

target station

out of 4 weeks of target station data as in
single-station models.

point for both training and testing while maintaining sepa-
ration between the sets in each CV round. As a result, this
method could be applied to all stations regardless of data
length. However, utilizing CV had two main limitations.

First, because CV involves evaluating ML models based
on the same data used for model optimization, it may over-
estimate the model performance. To investigate this poten-
tial bias, we compared CV performance (training error) with
holdout set performance (testing error) at stations where a
holdout set was available.

Second, for training the final global ML models, we
wanted to maximize the training set representation by us-
ing all available data from the period of 2003-2019. This
approach precluded the direct use of CV for evaluating the
final global ML models. To address this, we calculated test-
ing errors for stations with available holdout sets, but, for the
other stations, we relied on an alternative strategy. We trained
several intermediate models and assessed their performance
with CV to infer global ML model performance. Although
using separate ML models for generating estimates and as-
sessing their performance was not ideal, this method utilized
our limited data more effectively than reserving either por-
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tions of each station’s data or entire station datasets for test-
ing.

We constructed several intermediate models with differ-
ent setups and corresponding CV train—validation splits (Ta-
ble 3). The first setup involved single-station models, which
we trained and tested using only station-specific data. These
provided a simple baseline performance analysis for what our
method could achieve. The second setup consisted of station-
excluded models, where we utilized spatial CV. We trained
station-excluded models with all stations except the target
station, which acted as the validation set. This approach pro-
vided insight into model performance in locations without
measurements. The third setup, station-included models, was
similar to the station-excluded models but included a por-
tion of the target station’s data in the training set, allowing
a comparative analysis against station-excluded models. Ad-
ditionally, for illustration purposes, we constructed modified
versions of the station-included and station-excluded models
to generate a time series for 2013. We discuss the different
intermediate model setups in more detail in Sect. 4.4.

We structured the model training and testing procedures
into three main parts. First, we defined the training and
testing procedures, including data sampling, scaling, fea-
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ture selection, and hyperparameter tuning, to ensure consis-
tency and reliability across all ML models (Sect. 4.3). Sec-
ond, we conducted CV analyses for the intermediate models
(Sect. 4.4). Finally, we trained the global ML models, as-
sessed feature importance, and produced estimates for 2013
(Sect. 4.5).

4.3 Model optimization and training and validation
procedures

4.3.1 Train—validation splits for cross-validation

The first step in the analysis was formulating the CV pro-
cedures for the intermediate models and determining how to
sample and process the training and validation sets to ensure
a balanced contribution from all stations. We modified the
conventional k-fold CV method and devised two main vari-
ations for splitting the data into training and validation sets.
We used these variations and their combinations when train-
ing and testing the intermediate models (Table 3).

The first variation, a spatial train—validation split used for
spatial CV, treated each measurement station as a group. One
station was excluded from the training set, and the model
performance was tested based on this excluded (target) sta-
tion. This version was used to construct the station-excluded
models (Table 3).

The second variation employed a temporal train—
validation split to ensure that the seasonal cycle was repre-
sented in both training and testing. Here, each station’s data
were divided into four increments, with 2 weeks being allo-
cated to the training set, 3d being discarded, 8 d being as-
signed to the validation set, and another 3 d being discarded.
Although discarding days reduced the data availability, it
minimized autocorrelation between the training and valida-
tion sets, preventing overestimated performance. We typi-
cally repeated this process four times, rotating the weeks in
the sets.

4.3.2 Balancing the training set

The train—validation splits allowed us to assess the model
performance while maintaining representation from all se-
lected stations. However, the data length varied between the
stations, with the shortest measurement series covering 201 d
(about 6 and a half months), whereas the longest spanned
6182 d (about 17 years) (Fig. 2). As a result, the training sets
contained a different number of days from different stations.
Training the models without addressing this imbalance could
bias the global ML models towards stations with longer time
series. To address the issue, we implemented a weight that
was inversely proportional to the number of data points in the
station. Data points from stations with longer measurement
series were assigned a lower weight and shorter series were
assigned a higher weight so that all stations had equal in-
fluence during training. While this approach sacrificed some
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benefits of longer measurement series, it preserved all infor-
mation from these longer datasets and was therefore prefer-
able to sampling only a subset and discarding the rest.
Additionally, most of our stations were situated in Eu-
rope (Fig. 1), prompting us to investigate if this Eurocentric-
ity could produce bias in our ML models. We trained mod-
els with three different station selection schemes and used
cross-validation with a spatial train—validation split to evalu-
ate their performance at stations outside of Europe. The sta-
tion selection schemes were (1) using all stations, (2) sam-
pling a subset of the European stations, and (3) downweigh-
ing the data points from European stations. We separately
investigated how the selection scheme affected model perfor-
mance at European stations and non-European stations. The
analysis revealed that using all stations yielded comparable
model performance in relation to the two other methods for
both European and non-European stations. Training the mod-
els with data from all stations in the training set even resulted
in better median RMSEqg,, though the improvement was
not statistically significant (not shown). Thus, we decided to
incorporate data from all stations into our training set.

4.3.3 Feature scaling and selection

An essential part of training the ML models involved pro-
cessing the predictor variables (features). The variables had
different units, and their values differed by several orders of
magnitude. Such discrepancies can pose a challenge for ML
models, potentially affecting their performance (e.g., Kuhn
and Johnson, 2013). Additionally, assessing feature impor-
tance with MLR coefficients requires the variables to be
scaled. To address this, we centered and scaled the variables
— subtracting the mean and dividing by the standard deviation
—using a scaling function fitted to the weighted training data.
We applied this scaling to both the training and the validation
or holdout sets.

We also explored different feature selection approaches
but ultimately included all variables in our analysis. We in-
vestigated how the model performance was affected by se-
lecting only the most important variables, using only a cer-
tain type of variable (aerosol variables, meteorological and
gas variables), or combining the strongly correlating vari-
ables together. However, reducing the number of variables
decreased the model performance, likely because all vari-
ables were relevant to at least some of the measurement sta-
tions. We confirmed, using adjusted RZ, that including all
variables did not artificially inflate model performance due
to the larger number of predictors (not shown). As a result,
we chose to include all variables in our analysis.

4.3.4 Hyperparameter tuning

After establishing the other training and testing procedures,
we focused on tuning hyperparameters (HPs) for the XGB
model. We used a grid search and the spatial train—validation
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split method for cross-validation to ensure that the tuned
HPs generalized across all stations (Table 3). One station,
Schauinsland, Germany (SCH), was excluded from HP tun-
ing due to its frequent positioning above the boundary layer
during winter (Birmili et al., 2016). Based on the grid search
results, we selected parameter combinations that produced
strong average RMSEjqg,, across cross-validation rounds.
When multiple parameter sets performed well, we chose the
ones that minimized training time.

One of the hyperparameters we tuned was Hestimatorss
which sets the number of estimators and, consequently, train-
ing rounds during the model training. Even though we tuned
this variable, we also chose to use early stopping to avoid
overfitting and to save computing resources (e.g., Kuhn and
Johnson, 2013). Early stopping evaluates model performance
after each training round using a validation set and halts
training if no improvement is observed after a set number of
iterations. In our case, RMSE|qq , was used as the error met-
ric, and training was stopped if performance did not improve
after 10 consecutive rounds.

Throughout our analysis, we used one set of tuned HPs.
Originally, we formulated the training and testing procedures
with default HPs. After deciding the procedure for training
the final global ML models (detailed in Sect. 4.5), we tuned
the HPs to align with the final training configuration. The fi-
nal set of HPs can be found in Table S1. We then revisited the
training and testing formulations described above to ensure
that the initial conclusions remained valid.

4.4 Assessing model performance with intermediate
models

Once we had established the ML model training and testing
procedures, we trained and tested the intermediate models
and used the results to investigate the model behavior and
performance.

4.4.1 Single-station models

As outlined in Sect. 4.2, our first intermediate model setup in-
volved training single-station models for each individual sta-
tion (Table 3). These models provided insight into how well
ML models trained specifically for one station could pre-
dict Nygp at that location, a simpler task compared to model-
ing global Njgo variations. We trained and tested the single-
station models using CV with the temporal train—validation
split: 2 weeks from each month were allocated to the training
set, and 8 d were allocated to the validation set, with this be-
ing repeated four times with different days rotated in the sets
(Table 3). For consistency, we scaled the variables, and, for
XGB, we applied early stopping and the tuned global HPs.
Although we considered tuning HPs for individual single-
station models, we found that using globally tuned HPs was
sufficient. For instance, when evaluating the performance of
a single-station model for Alert, Canada (ALE) (a station
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with unique characteristics because it is located in very clean
polar environment), results showed minimal improvement
when using station-specific HPs (not shown). To conserve
computational resources, we chose to use the global HP set
across all single-station models.

Following cross-validation, we analyzed the results to as-
sess the models’ performance at each station and between the
MLR and XGB models. To verify the reliability of our re-
sults, which CV may overestimate, we also evaluated single-
station model performance using the holdout set for the sta-
tions where it was available.

4.4.2 Station-excluded models

The second intermediate model setup involved station-
excluded models, designed to evaluate global model perfor-
mance in stations not represented in the training data (Ta-
ble 3). This step was essential for estimating how well the
global models could perform in areas without measurements.
We employed the spatial train—test split for CV, testing the
models using all available data from the target station while
training them with data from all other stations. To ensure bal-
anced contributions from each training station, we applied
weighting to the data points. We scaled the variables and, for
XGB, used tuned hyperparameters and early stopping. We
conducted an analysis for both MLR and XGB and compared
their performance at each station. Additionally, for stations
with available holdout sets, we evaluated the performance of
the station-excluded models using these sets.

4.4.3 Station-included and station-excluded model
comparison

To assess the impact of including data from the target envi-
ronment in the training set, we constructed station-included
models (Table 3). For CV, we used a combination of spatial
and temporal train—validation splits. The training set com-
prised data from all other stations, along with 2 weeks per
month of data from the target station, while the validation set
contained 8 d per month from the target station. As with the
standard temporal train—validation split, we conducted four
CV rounds. We also scaled the variables and used tuned HPs
and early stopping for XGB.

Additionally, to enable direct comparison between the
station-included and station-excluded models, we created a
modified version of the station-excluded models. As before,
the training set contained data from all stations except the
target station, and the validation set included only data from
the target station. However, in this version, the validation set
was further restricted to include only the days that matched
the temporal validation set (Table 3). This process involved
four CV rounds, rotating through different validation sets.
The scaling, HPs, and early stopping were applied as before.
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4.4.4 Time series analysis

As the final step in assessing model performance, we ana-
lyzed the time series generated by the station-excluded and
station-included models, comparing them to the observed
Nigo time series. The goal was to demonstrate the potential
performance of the final global ML models, both at the mea-
surement stations and in areas without measurements. This
analysis was conducted for 2013 as this year had the most
comprehensive data availability across different stations.

To generate the estimated Njgg for this analysis, we fol-
lowed a procedure similar to the original station-excluded
and station-included models (Table 3), with one key modi-
fication: the validation sets contained data from only 2013.
For the station-excluded models, this involved still using the
spatial train—validation split but with the validation set re-
stricted to 2013 data. Similarly, for the station-included mod-
els, we continued to apply the combined spatial and temporal
train—validation split, but the validation set consisted solely
of 2013 data. However, unlike in the previous steps, we did
not use cross-validation rounds for the station-included mod-
els; instead, we used the first 2 weeks of each month as the
training set. For both setups, we scaled the data using the
scaling function trained on the training sets, and, for XGB,
we applied the tuned HPs and early stopping.

With the station-excluded and station-included models
trained and the corresponding validation sets defined, we
generated estimates for 2013. The station-excluded models
produced continuous time series, while the station-included
models generated time series with only an 8 d period for each
month, as determined by the validation set. After generating
the estimated Nyqg time series, we compared them to the ob-
served measurements.

4.5 Global ML models and Nqqq fields

In the final part of the analysis, we proceeded to train the
global ML models, analyze their feature importance, and
generate global Ny fields for 2013.

We trained the final global ML models with a training
set containing all stations, all available data points, and all
variables. As before, the data points in the training set were
weighed to ensure an equal contribution from all stations to
the model training. We also fitted the scaling function with
the training data, scaled the variables with it, and saved it to
be used as a scaler when generating the global Njgg fields
for 2013. Once the training set was processed, we proceeded
to train the global MLR model (MLRgjobar). For the global
XGB model (XGBglobal), we followed the same procedure,
except with the addition of the tuned hyperparameters and
early stopping. Here, it should be noted that, in principle,
early stopping requires separate training and validation sets
to evaluate when the model performance plateaus. However,
given that the global ML model training did not have a train—
test split, we instead used the training set for evaluation.
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Early stopping caused the model training to be interrupted
after around 425 training rounds (compared to 900 from our
HP tuning), potentially earlier than when it would have oc-
curred with separate sets. Nevertheless, because we had uti-
lized early stopping in the previous analyses to mitigate over-
fitting and save computing resources, we continued to imple-
ment it here.

Once we had trained the MLRgoba1 and XGBgjopa, we
proceeded to analyze how different variables contributed to
these models using model-given feature importance.

Finally, to generate the global Nygg fields for 2013, we
utilized the 2013 global reanalysis dataset. After scaling the
dataset using the previously fitted scaler, we provided it as
input for the MLRgjoba1 and XGBgjobat models and generated
daily Njqo fields for 2013.

We investigated the global ML models’ performance both
at measurement stations and in areas without measurements.
At the measurement stations, we evaluated the global ML
models using the holdout set for stations with Njgo data
available between 2020 and 2022. In areas without measure-
ments, we compared the MLRgjoba1 and XGBgjobar fields. We
calculated the RMSEog,, between these estimates for each
grid cell, and, if the error value was large, it indicated that
the models generated very different estimates for that re-
gion, meaning at least one must be inaccurate. Conversely,
we could assume that the estimates were more reliable if
the models produced similar results. However, even when
the models yielded similar results, we could not be certain
that the estimates were close to the true Nigg without actual
measurements from those locations. For example, if our re-
analysis dataset contained a bias in a particular region, both
models could produce similar but erroneous results. Since
the comparison between MLRgioba1 and XGBgiopa fields pro-
vided only a rough error estimate, we attempted to develop a
more sophisticated method for assessing global performance.
However, this effort did not yield results.

5 Results and discussion

5.1 Assessing intermediate model performance
5.1.1 Single-station model performance

The training errors for the single-station models are shown
in Fig. 3. While generating these models was not the primary
goal of this study, they provided a simpler setting to eval-
uate our method and to identify potential challenges. Many
single-station models achieved RMSEj,,, values below 0.2,
and almost all remained under 0.3, indicating that model per-
formance was generally excellent or good.

Testing errors for stations with data from the period of
2020-2022 are shown in Fig. 4. As expected, testing er-
rors were slightly higher than training errors, but the over-
all conclusions remained consistent. These results demon-
strate that estimating Njoo using ML models and reanaly-

Aerosol Res., 3, 589-618, 2025



602 A. Ovaska et al.: Machine learning estimates of accumulation-mode particle concentrations
0.40
EE XGB
0.35 MR
0.30 ===z R R
o
g ‘ *
& 0.25 ig !j X *x
E 020 et - -l - ,i, ,,,,,,_,,! ,,,,,, ,h” ,,,,,,,,,,,,,,,,,,,, ?,’ ,,,,,,,,,, ﬂ, ,,,,,,, ,iﬁ ,,,,,,,
. i)i E! ; - K ok
B e i* * 0
0.15 =K En =Ek i N
0.10
Z<Z<§<<—ln:ZZZI-IJLIJ:)—ln:crn:n:crccn:mz:fmcc:)moozzm
= = === o N E < o)
5gseegg;8&&b%%Qg%%%%%%%gggo%$:§§651
g [ - i B BT R = >—-o T -y ==
waemogbesrzgsmasgddloagNTouNnDgZownEg=zh
JEBEEoEIES o E>3283EUERFES5E2REQ
Station

Figure 3. Comparison between training errors (RMSE calculated for log-transformed concentrations) of the single-station models for one
station with XGB and MLR machine learning models. The boxes and whiskers indicate the variation caused by selecting different train—test
splits. The boxes show the quartiles, and whiskers show the 1.5 interquartile range of the lower and upper quartile. Data points outside these
are considered to be outliers and are marked with individual markers. Additionally, notches in the boxplots indicate the confidence interval
of the median. If the notches of two boxes do not overlap, this indicates that the medians are statistically significantly different at the 5 %

significance level.

sis data is feasible. However, at some stations (e.g., Harwell,
United Kingdom, and Preila, Lithuania), model performance
was inadequate (RMSEjoq , > 0.3), which we discuss further
in Sect. 5.3.

5.1.2 Assessing station-excluded and station-included
model performance

We first looked at the performance of the station-excluded
models, which were trained separately for each station. Fig-
ure 5 depicts the station-excluded Njgg estimates against the
observed Njgg for all of the stations when no data from the
target station were included in the training set. In practice,
this means that, for each station, the estimated N9 was
produced with a different model and different validation set,
and the results are presented in one figure. In contrast to the
other instances where we used the station-excluded models,
here, the estimates were not generated for all of the available
data from the target station (Table 3). Instead, we used only
around 200d to have a comparable number of data points
from all stations in the validation sets. The sampling method
for these 200d is explained in Sect. S3.

Figure 5 provides a rough indicator of how the global ML
models would perform in locations not directly represented
in the training set. Looking first at the MLR result (Fig. 5a),
even when each station had been excluded from the train-
ing set, the station-excluded MLR models could produce the
range of observed Njgo values from below 10cm™3 to over
10* cm—3. However, the station-excluded models still strug-
gled with replicating the observations at the low concentra-
tions, and, in general, 54 % of daily estimates and 15 out of
35 station median estimates fell outside the factor of 1.5 from
observations.
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For the station-excluded XGB models (Fig. 5b), the sta-
tion medians were better captured, with only nine station
medians falling outside the 1.5-factor limit. The daily values
were also captured slightly better, though, still, 48 % fell out-
side the factor of 1.5. The station-excluded XGB models also
failed to reproduce extreme values: they could not produce
values below 25cm™3, systematically underestimated val-
ues above around 5000 cm 3, and could not produce values
above 10*cm™3. Overall, these results show that the XGB
models tend to be slightly more precise and replicate the me-
dian values better, but MLR models are better at extrapolat-
ing to low and high concentrations, though they still struggle
to capture extreme values.

Next, we analyzed in more detail the MLR and XGB
station-excluded performance at different stations. To ensure
that the training-error analysis (Fig. 6) was reliable, we first
compared the training and testing errors against each other
at the stations that had data after 2020 (Fig. S2). Because
the target station had been left out of the training set in the
station-excluded models, the main difference between the
training and testing errors was that the training error was
calculated with observations before 2020, and testing errors
were calculated with observations after 2020, whereas the
data before 2020 had also been used to optimize the ML
models. Figure S2 shows that, for station-excluded models,
the difference in training and testing errors was small, and we
felt confident in drawing conclusions from the training error.

In terms of training error (Fig. 6), 25 out of 35 sta-
tions showed lower RMSEjqg,, values for XGB compared
to MLR, indicating generally better performance. However,
MLR achieved equally good or better performance at 10 sta-
tions. Figure 6 also shows that the station-excluded perfor-
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mance varied depending on the station. The European sta-
tions typically had good or even excellent performance, prob-
ably because the N, different emissions, and meteorolog-
ical conditions at many of the European stations were quite
similar to each other. Even when the target station was left
out from the training of the station-excluded model, there
would still be at least one similar station in the training set.
Conversely, stations with poor station-excluded performance
might correspond to environments that did not have repre-
sentation in the training set if the station was excluded from
training.

To investigate further this variation in performance, we an-
alyzed the station-included models’ performance and com-
pared them against the station-excluded models’ perfor-
mance (Fig. S3). For the stations with excellent station-
excluded performance (RMSE]oglo <0.2), we noticed that
the differences between the station-included and station-
excluded model RMSEjog,, were small (below 0.01). This
supports our interpretation that, for many European sites
(Vielsalm, Belgium; Waldhof, Germany; Neuglobsow, Ger-
many; and Melpitz, Germany, for both MLR and XGB mod-
els and Vavihill, Sweden, and Kosetice, Czech Republic, for
only the XGB model) and some other stations (Southern
Great Planes, USA; Amman, Jordan; and Marikana, South
Africa, for the XGB model), it did not matter whether the
station had been excluded from the training because the
other stations could still represent the excluded station during
training.

Conversely, for many stations, the station-included models
produced clearly better results than station-excluded mod-
els (Fig. S3). For the XGB model, these stations include
Delhi, India; Hada al Sham, Saudi Arabia; Sdo Paulo, Brazil;
Po Valley, Italy; Zotino, Russia; Amazonas, Brazil; Nanjing,
China; Virrio, Finland; and Alert, Canada. The better perfor-
mance confirms that these stations have some unique char-
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Figure 6. Comparison between station-excluded MLR and XGB model performance (RMSE calculated for logq-transformed concentra-

tions) at each station.

acteristics, and, without their contribution, the XGB model
could not capture the type of environment they represented.
For example, when Delhi, India, which has the highest Nigg
in our dataset, was excluded from the training set, the models
could not replicate the high Nygo values. This led to underes-
timation and poor performance at the station (not shown).

The MLR models were less sensitive to whether station-
specific data were included in training compared to the XGB
models (Fig. S3). Because MLR uses linear predictor func-
tions, adding a small number of new data points does not al-
ways affect the model performance, resulting in smaller dif-
ferences between the station-included and station-excluded
model versions. In contrast, any new data in the XGB mod-
els can alter the tree structure, affecting model performance.
However, this also increases the risk of overfitting, which
may reduce the XGB model’s ability to generalize outside
the measurement stations.

5.1.3 Time series

Figure 7 compares the observed Njgo time series in 2013
to the estimated N1gp time series produced with the station-
excluded and station-included models. The comparison al-
lowed for a better understanding of the ML model behavior
outside the measurement stations.

In our dataset, Alert, Canada (ALE), was the sole represen-
tative of the extremely clean polar regions (Fig. 7a). When
ALE was excluded from the training, none of the models
performed well at that location, demonstrating the challenge
of missing environmental types in the training set. However,
when ALE was included in the training, the models, espe-
cially XGB, produced better estimates.

In Hada al Sham, Saudi Arabia (HAD), both station-
excluded models underestimated N1gp, whereas, among the
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station-included models, the MLR model showed some
improvement, and the XGB model improved noticeably
(Fig. 7b). The underestimation likely stems from the sta-
tion’s complex surroundings, which include desert, sea, and
a nearby hotspot of anthropogenic and biogenic activity
(Hakala et al., 2019). While actual concentrations at the sta-
tion can be high due to the hotspot, reanalysis data cannot
resolve such sub-grid-scale variability, resulting in underes-
timated predictor values and low Njgg estimates. The station-
included XGB model may still perform well if the predictors
maintain a correlation with Ngo, even when underestimated.

Nanjing, China (NAN), Njgo estimates were captured
well, though they were mildly underestimated with the
station-excluded models and the MLR station-included
model (Fig. 7¢). The station-included XGB model produced
slightly better results. It is possible that specific environmen-
tal characteristics in Nanjing contribute to underestimation
when using reanalysis data to estimate Nyqg.

In Virrio, Finland (VAR), the models performed well
during summer, but the station-excluded models overesti-
mated the low concentrations during winter (Fig. 7d). While
the MLR station-included model did not yield notably bet-
ter results than station-excluded models, the XGB station-
included model successfully captured the winter periods as
well. In general, low concentrations tend to be quite diffi-
cult for our ML models to capture, but the station-included
XGB model likely succeeds in capturing them because the
tree structure allows it to fit more closely to any included
training data.

Waldhof, Germany (WAL), a typical European station,
was well represented by other stations in the dataset (Fig. 7e).
Consequently, even when WAL was excluded from training,
the estimated Njgp time series still aligned closely with the
observations. Including data from Waldhof in the training set
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did not enhance the results. In contrast, in Bosel, Germany
(BSL) (Fig. 7f), another central European station, both the
station-included and station-excluded models systematically
underestimated Njqp, although the daily variations were cap-
tured well. Birmili et al. (2016) noted that the total particle
concentrations in Bosel were higher than at the other rural
German sites.
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5.2 Global ML models and N1qq fields
5.2.1 Feature importance

Moving on to the final global ML models, Fig. 8 shows the
importance of different features in MLRgjoba1 and XGBgjobal-
The two most important variables in both ML models were
the black carbon aerosol (BC) mixing ratio and the organic
matter aerosol (OM) mixing ratio. In MLRgoba1, these vari-
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ables were hydrophilic, whereas, in XGBgjoba, they were hy-
drophobic. However, we should not conclude that these vari-
ables were truly the most important ones. Due to the underly-
ing dynamics of the CAMS dataset, BC and OM mixing ra-
tios were highly correlated (Fig. S4), as were the hydrophilic
and hydrophobic mixing ratios (not shown). Such strong cor-
relations between variables can pose challenges for ML mod-
els (e.g., Kuhn and Johnson, 2013). In the MLRgjoba1 model,
we observed an unexpected result: instead of assigning posi-
tive coefficients to both variables, it assigned a high positive
coefficient to the hydrophilic BC mixing ratio while giving
the hydrophilic OM mixing ratio an approximately equally
high negative coefficient. This suggests that the MLRg|opal
model may have overestimated the influence of hydrophilic
BC and then counterbalanced this by assigning a negative co-
efficient to hydrophilic OM. Typically, their combined effect
on Nigo was quite small. However, if the BC and OM mix-
ing ratios are less closely linked in certain locations or during
certain time periods, this imbalance could significantly affect
the predicted N1gp concentrations. To explore this further, we
analyze their relationship in Sect. S5 (Fig. S5).

Aside from the BC and OM mixing ratios, the most im-
portant variables influencing the ML models were sulfate
aerosol, ammonia, carbon monoxide, and sulfur dioxide mix-
ing ratios followed by temperature (Fig. 8). Since most of
these variables are primarily associated with anthropogenic
sources, it is unsurprising that, in the MLRgjoba1 model, they
exhibited a positive relationship with Njgp concentrations,
meaning that an increase in their concentrations led to an in-
crease in Njqo.

In contrast, the variables more linked to the natural pro-
cesses tended to have lower importance and showed both
positive and negative coefficients in the MLRgjopa1 model.
Some coefficients aligned directly with the expected physi-
cal processes. For example, the relationship between specific
rainwater content (SRWC) and Njqp is negative because rain
removes aerosol particles from the air. Similarly, the nega-
tive coefficient for boundary layer height (BLH) reflects how
a larger daily mean BLH dilutes Njgp by mixing it into a
larger volume of air.

Additionally, there were variables that have physically
meaningful coefficients, but the interpretation is more nu-
anced, such as in the case of the sea salt aerosol mixing ra-
tio. A higher concentration of sea salt aerosol should result
in a higher Nigp concentration. However, because a higher
sea salt aerosol concentration often coincides with the ar-
rival of clean marine air masses, MLRgjoba interprets the
relationship to be negative. This is a meaningful interpre-
tation over continental areas, but over oceans (which were
not represented in our training set), it would fail to capture
the true relationship between sea salt aerosol concentration
and Njgp. Moreover, a high sea salt concentration in the sub-
0.5 um size is probably accompanied by a high supermicron
sea salt aerosol concentration, which gives few additional
primary CCN but may substantially suppress secondary CCN
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formation by acting as a sink for low-volatility vapors and
sub-CCN-sized particles. A similar phenomenon can explain
the negative coefficient of the sub-0.55 um dust aerosol.

Finally, there were variables for which the MLR coef-
ficients might not have been able to capture the physical
processes. One of these was temperature, which may have
a complex relationship with Njgo depending on the loca-
tion. For example, in many parts of the world, tempera-
ture can be associated with increased volatile organic com-
pound (VOC) emissions, which leads to a larger number
of aerosol particles growing to the accumulation-mode size
range (Paasonen et al., 2013). This effect has a strong corre-
lation with isoprene (CsHg) and terpene (C19H16) emissions,
and MLRgjoby may struggle with variables with strong cor-
relations. However, a negative coefficient being assigned for
Cs5Hg mixing ratios but a positive coefficient being assigned
for C1oH16 mixing ratios and temperature agrees with several
studies suggesting that isoprene likely inhibits the secondary
aerosol formation and growth of particles to Nigg sizes (Lee
etal., 2016; Heinritzi et al., 2020). Additionally, natural VOC
emissions may be suppressed during the hottest days in many
environments. On the opposite side of the temperature spec-
trum, cold temperatures can also lead to higher Njoo concen-
trations due to heating-related residential biomass combus-
tion, which consequently increases aerosol and aerosol pre-
cursor emissions. The MLRgjopal cannot capture these com-
plex patterns directly but may attempt to do it indirectly via
correlating variables. This may also explain other counter-
intuitive coefficient values, such as NO; having a positive
coefficient and NO having a negative coefficient.

5.2.2 The global N1qg fields

Figure 9 shows the annual mean Njgg fields in 2013, calcu-
lated by averaging the daily Njgp estimates — see Fig. 9a for
MLRgjobar and Fig. 9b for XGBgjobar. Both models estimated
the highest Ngo in South Asia and East Asia and the lowest
Nigo in remote locations such as polar areas and deserts.
The comparison between MLRgjoba1 and XGBgiobar N100
fields for 2013 is shown in Fig. 9c. Overall, the ML models
produced similar values across most continental areas, partic-
ularly in large parts of Europe and North America, though the
XGB model generally yielded slightly higher estimates. Ad-
ditionally, the results agreed well (RMSEjyg,, < 0.15) near
most measurement stations, as well as in more densely pop-
ulated areas (Smith, 2017, 2023), even in regions without in
situ measurements. This pattern is evident in the most popu-
lated areas in the Middle East, southern Siberia, and Cen-
tral Asia. In South America and Africa, the model agree-
ment was also better in the more populated regions. How-
ever, the limited number of measurement stations in these
continents may affect the results because not all populated re-
gions showed strong agreement between the models. A sim-
ilar trend was observed in South and East Asia. While these
regions are, overall, very densely populated, only the most
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highly populated areas exhibited strong agreement, which
may also relate to the distribution of measurement stations.
Although the agreement between models does not confirm
accuracy against measurements, it suggests consistency be-
tween the models. This consistency is likely because these
regions are well-represented in the model training, either di-
rectly through a nearby station or indirectly because most of
the stations in our dataset are located in anthropogenically
influenced areas.

The models diverged in several regions (Fig. 9c), partic-
ularly over remote or clean continental environments such
as Antarctica, the Australian deserts, the eastern Sahara
Desert, and parts of the Middle East (RMSEjog,, > 0.60).
In the latter two regions and some mid-latitude marine re-
gions, the difference appeared to stem from low NH3 val-
ues (Fig. S6), which led MLRg|oba to generate lower Nigo
estimates. Other continental areas with smaller but still con-
siderable discrepancies (0.30 < RMSEjog , < 0.45) included
parts of South America, particularly the Amazon Rainforest;
the Congo Rainforest; and some regions in Africa, includ-
ing the Kalahari Desert, where the MLRjopa1 model consis-
tently predicted lower Nygp values than XGBgjoba1. Addition-
ally, there were some hotspots where MLRgjopar produced
clearly higher Ny estimates compared to XGBgoba. The
divergence likely stems from different responses to anthro-
pogenic variables in the MLRgjoba and XGBgjobar models.
While the anthropogenic variables were important in both
models, the linear relationship between the variables and
Nigo in the MLR model seems to cause underestimation in
low Njgo values — common in clean or remote environments.
The XGB model did not exhibit this behavior, possibly due to
its non-linear nature. However, in some locations, the lower
Nigo estimates from the MLR model appear to be more accu-
rate than those from XGB. For example, in Alert, the station-
excluded MLR model captured certain low Njgg values better
than the station-excluded XGB model.
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Notable differences also emerged over the oceans
(Fig. 9c¢), which are poorly represented in our training set.
In these regions, MLRgjobar typically produced much higher
Nigo estimates than XGBgjopa1. However, the models showed
better agreement in continental outflow areas, such as in the
northwestern Pacific Ocean and along major shipping routes,
likely due to their anthropogenic influence, which makes
them better represented in the model training.

The testing errors for MLRgioba1 and XGBgjopal models at
stations with 2020-2022 observations are shown in Fig. 10.
These global ML model errors aligned with previous anal-
yses, such as the station-excluded testing errors (also in
Fig. 10), with performance varying by location and the XGB
model generally outperforming MLRgjoba1. The most notable
differences between global and station-excluded model per-
formance occurred at Mace Head (Ireland), Virrio (Finland),
and Schauinsland (Germany). In all of these locations, the
global XGB models performed better. This improvement was
likely due to the frequent low concentrations at these stations,
which are challenging to capture without training represen-
tation from the target station. In Mace Head, these low con-
centrations were related to clean air masses coming from the
ocean; in Virrio, they were associated with clean winter pe-
riods; and in Schauinsland, they were associated with times
when the measurement station was above the boundary layer.

5.3 Interpreting results from different ML models

By evaluating model performance across the intermediate
models (single-station models, station-included models, and
station-excluded models) and global models, we identified
three cases where our models struggled to capture Njgg ac-
curately. Figure 11 presents a comparison of the RMSEjog,,
medians from the CV analyses for single-station models,
station-included models, and station-excluded models (the
version directly comparable to station-included models, as
shown in Table 3).
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indicate that the models agree very well.

Firstly, our models struggled with capturing Njgp at
certain stations, even when using single-station models
(Fig. 11). While the single-station estimates performed
well at most stations, two stations had poor performance
(RMSEjog,, > 0.3). Additionally, at stations with RMSEjog,,
values between 0.2 and 0.3, certain conditions or character-
istics may still be difficult for the single-station models to
capture, lowering the performance, even though, overall, the
RMSEjeg,, values are acceptable. Notably, the stations with
high single-station RMSEqg,, values often continued to ex-
hibit lower performance in the other intermediate models,
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suggesting that these locations are inherently difficult to cap-
ture with our method (Fig. 11).

Several factors may explain these difficulties. Our dataset
may lack key reanalysis variables necessary for accurately
estimating Npgo in these environments. Reanalysis data may
also contain uncertainties or struggle to resolve sub-grid-
scale processes crucial for Nygo estimates. Additionally, the
non-linear interactions between predictor variables and Njgp
may not be fully captured by our ML models due to ei-
ther inherent model constraints or the limited size of the
training dataset. Among our datasets, both stations where
single-station model RMSEjog,, values exceeded 0.3 (Har-
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station-excluded model testing errors (corresponding to Fig. 6) for the stations that had Njgg measurements for 2020-2022.
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well, United Kingdom, and Preila, Lithuania) had relatively
short measurement time series. Furthermore, Xian et al.
(2024) reported that the CAMS reanalysis AOD differs from
the AERONET AOD in areas near Preila. Their observation
suggests that there may be persistent sub-grid-scale variabil-
ity in aerosol concentrations around the site, which could be
contributing to model inaccuracies.

The second challenge our ML models faced was a de-
cline in station-included model performance compared to the
single-station models. While we expected some decrease due
to the added complexity of incorporating multiple locations,
the station-included performance declined notably at some
stations. The decline was particularly evident in the MLR
models, where, at 13 stations, the station-included model
RMSE]jqg,, values were over 1.5 times higher than single-
station model RMSEjog,, values (Fig. S7a). For the XGB
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models, the station-included performance was notably worse
than single-station performance in Schauinsland (Germany)
and possibly in Bosel (Germany) and Annaberg-Buchholz
(Germany) (Fig. S7b). This weaker performance may arise
from variable—-Njgg interactions that differ from other sta-
tions. Since the models — especially the MLR model — strug-
gle to capture conflicting variable-Njgo relationships, sta-
tions with unique interactions relative to the rest of the
dataset tend to experience the largest performance decline
from single-station models to station-included models. The
unique interactions that lead to performance decline may
arise not only between observed Njgo and real aerosol, gas,
or meteorological variables but also artificially between ob-
served Nygp and CAMS variables distorted by uncertainties.
One example of such artificial interaction is the sub-grid-
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scale variability-related underestimation seen in MLR esti-
mates at Hada al Sham, as discussed in Sect. 5.1.3.

Conversely, at least at one station (Vavihill, Sweden), the
station-included XGB model outperformed the single-station
XGB model (Fig. S7b). One explanation for this improve-
ment is that Vavihill has a relatively short measurement se-
ries in our dataset, which limited the single-station perfor-
mance. However, in station-included models, Vavihill’s data
may be supplemented by the data of other similar stations in
our dataset, improving the performance.

Thirdly, our models struggled in locations that were not
well-represented in our training data. While single-station
and station-included models, which incorporated station-
specific data, generally captured Njgp at least moderately
well (RMSEjeg,, < 0.3), station-excluded models performed
notably worse at certain sites — even when the station-
included performance was excellent (RMSEjog,, < 0.2) (dis-
cussed in more detail in Sect. 5.1.2). Figure 11 illustrates
this pattern, especially for the XGB models: when the XGB
station-included performance was excellent (RMSEjoq,, <
0.2), the station-excluded performance varied widely, rang-
ing from excellent (RMSE|og , < 0.2) to poor (RMSEjeg,, >
0.3). If both station-included and station-excluded perfor-
mances were excellent, it indicated that Njgo in these sta-
tions could be captured well even without their own data
in the training set because similar stations in our dataset
provided sufficient representation. Conversely, as station-
excluded RMSE]jqg,, increased, it was suggested that incor-
porating station-specific data became increasingly important
for accurate estimates. This effect was particularly notable in
environments with high Njgp concentrations compared to the
other stations.

Our cross-validation indicated that our training set best
represents European urban or rural environments influenced
by human activity and similar anthropogenically influenced
environments. Even when evaluating the global ML models
with a holdout set containing data from the period of 2020-
2022 (Fig. 10), the models performed well in capturing N1gg
at the European stations. The global model comparison gives
similar results, showing that the models tend to agree in Eu-
rope but also in other populated areas.

5.4 ML model limitations

While our results demonstrate promising performance across
many environments, the findings from Sect. 5.3 highlight that
model accuracy depends strongly on the availability and rep-
resentativeness of training data. In other words, different lim-
itations in the Njgp measurements and reanalysis data cause
limitations in the ML models. While Sect. 5.3. touched upon
these issues, here, we discuss them further.

For the Njgp measurements, the main challenge is data
availability. To train ML models that capture diverse envi-
ronments and meteorological conditions, we require a broad
dataset that covers a wide range of locations and time peri-
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ods. In an ideal case, the dataset would represent environ-
ments with different natural and anthropogenic emission lev-
els extending from low to high global extremes, as well as a
wide spectrum of different anthropogenic to natural contri-
bution ratios. The global distribution of long-term datasets,
reflected by measurement stations utilized in this study, is
clearly biased towards continental, anthropogenically influ-
enced, and European environments. Thus, the performance
of our global ML models is expected to be worse in marine
and tropical environments, as well as in the Southern Hemi-
sphere and in polar regions. In addition, ideally, we would
have at least 5 years of data from each station. This would al-
low for the division of data into training, validation, and hold-
out sets, with at least one full seasonal cycle in each set and
multiple cycles in the training set. Since environmental con-
ditions and aerosol concentrations vary between years, such
a dataset would enable ML models to generalize better and
learn from a broader range of conditions, resulting in more
robust estimates. Unfortunately, our current dataset lacks full
seasonal coverage at some stations, which makes it harder
for the ML models to accurately capture station-specific and
global trends. This emphasizes the need for continuous long-
term observations.

Another challenge with in situ measurements is potential
measurement errors that may remain after filtering. These er-
rors can propagate into the ML models, affecting overall ac-
curacy. Additionally, because our method relies on ground-
level Njgp measurements, the ML models can only produce
ground-level Njgg estimates and do not provide vertical pro-
file information, which is needed for certain applications. For
example, when studying aerosol-cloud interactions, CCN
concentrations near or above the cloud base are particu-
larly important (Quaas et al., 2020). While the ground-level
aerosol concentrations represent the cloud-level concentra-
tions in well-mixed boundary layers, where surface and cloud
base conditions are coupled, they do not reflect cloud-level
concentration under decoupled conditions (Su et al., 2024).

Regarding reanalysis data, CAMS and ERAS5 are subject
to various uncertainties that can affect the performance of our
ML models. Block et al. (2024) provide a detailed overview
of uncertainties in CAMS aerosol variables, including lim-
ited satellite retrievals in polar regions; omissions such as
volcanic activity; and specific volcano-related biases around
sites like Mauna Loa (Hawaii, USA) and Altzomoni (Mex-
ico), both of which emerge as hotspots in our MLR model re-
sults. Additionally, CAMS currently excludes nitrate aerosol
mixing ratios (Inness et al., 2019a) and applies a simplified
partitioning scheme for hydrophilic and hydrophobic BC and
OM based on emission fractions and a time-dependent con-
version rate (Rémy et al., 2022). We should also note that the
relations between Njgp and OM or BC in our ML models are
likely to be affected by the apparent challenges by CAMS in
predicting the overall concentration levels of OM (Amarillo
et al., 2024) or past changes in BC concentrations over areas
such as China (Li et al., 2024).
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For gas compounds, CAMS variables assimilated with
satellite retrievals — such as CO and NO,. — have been evalu-
ated in studies by Inness et al. (2019a) and Langerock et al.
(2024). In contrast, variables not assimilated with satellite
data are less thoroughly investigated, and their uncertainties
likely vary notably across variables and regions. Although
we do not explicitly assess the impact of these CAMS un-
certainties on our ML model, they are expected to introduce
errors into our global Ny fields.

Moreover, integrating gridded reanalysis data with single-
point N1gp measurements can introduce challenges at the sta-
tions located in grid cells with sub-grid-scale variability in
emission sources, meteorology, and topography. Because re-
analysis data represent grid cell averages, these may not cap-
ture the true predictor variable concentrations at the mea-
surement site, even if the reanalysis data are interpolated
to the exact station location, leading to uncertainties in the
model’s learned relationships. This discrepancy, along with
other CAMS uncertainties, may partly explain the poor per-
formance observed at some stations, even when using single-
station models.

6 Summary and conclusions

Observation-based data on global accumulation-mode par-
ticle number concentrations (Nygg) are essential for assess-
ing global CCN concentrations and their climate impacts, as
well as for evaluating Earth system models. According to
Rosenfeld et al. (2014), reducing uncertainties in aerosol—
cloud interactions requires capturing global CCN concentra-
tions within a factor of 1.5 of true values. In this study, we
developed a method for generating global Njgg fields using
a combination of in situ measurements, reanalysis data, and
machine learning. For evaluating ML model performance at
measurement stations and outside of them, we applied cross-
validation to several intermediate models. We also trained
global ML models on all available data and generated daily
global Ny fields for 2013.

We found that, at least in a simple setting, such as in esti-
mating the Njgo at a specific location with the single-station
models, our method yields good results. This is especially
true for the XGB model. However, some stations were more
challenging to capture, possibly due to an insufficient num-
ber of data points, missing crucial reanalysis variables, or in-
adequate representation of sub-grid-scale variability in con-
centrations and other reanalysis data uncertainties. Addition-
ally, ML models — particularly the MLR model — may strug-
gle to capture the non-linear interactions between Nigp and
the reanalysis variables at these stations. The stations where
single-station models struggled remained challenging for all
types of intermediate models.

Addressing these limitations is challenging, but future
work could explore incorporating additional variables, for
example, accounting for a station’s position relative to the top
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of the boundary layer, which might help improve ML model
performance in high-altitude environments by allowing mod-
els to recognize when stations are above it. Additionally, re-
fining the grid selection scheme could improve accuracy at
stations where sub-grid-scale variability causes the reanal-
ysis data to misrepresent local conditions. Comparing ob-
served concentrations of key predictor variables with their re-
analysis counterparts can help identify discrepancies. If sig-
nificant differences emerge, selecting a nearby grid cell that
better represents the measurement station — such as choosing
a land-only grid cell instead of one that includes both land
and ocean — may enhance model performance.

Our primary approach for evaluating ML model perfor-
mance in areas without observations was cross-validation us-
ing station-excluded models. For each station, we trained
an ML model without station-specific data and assessed
how well the model reproduced the station’s observations.
The analysis of these station-excluded models revealed that
model performance largely depended on whether the train-
ing set contained stations with similar characteristics. This
analysis suggests that our global ML models can generalize
beyond measurement stations if the environments or condi-
tions resemble the stations in our training set.

For the final global ML models, we investigated feature
importance and model interpretation in more detail. Both
global ML models identified sulfate aerosol and ammonia,
carbon monoxide, and sulfur dioxide mixing ratios as the
most important variables. BC and OM mixing ratios were
also indicated as important, though their combined contribu-
tion was likely to be minor. We used the feature importance
to interpret some of the model behavior of the MLR model.
We noticed that some variables, such as sea salt aecrosol, were
represented in ways that do not apply universally across lo-
cations and conditions, potentially impacting ML model per-
formance.

The comparison between MLRgjoba1 and XGBgjobal fields
for 2013 revealed that the models agreed better in Eu-
rope, North America, and many other densely populated
and anthropogenically influenced regions, including the most
densely populated areas in South America, Africa, the Mid-
dle East, southern Siberia, and South and East Asia. These
areas were likely to be better represented in the training data,
making the ML models potentially more reliable in those
regions, though we cannot be certain. Conversely, the ML
models showed greater disagreement in remote areas, such
as deserts, polar regions, rainforests, and oceans, suggest-
ing that these environments may be more challenging for the
models to capture. Our analysis did not indicate whether the
MLR or XGB model, if either, performed better in these re-
gions.

Opverall, both the MLR and XGB models have their advan-
tages and disadvantages, and our analysis could not defini-
tively determine which model should be used for generat-
ing global Njg fields. XGB generally performed better and
was also able to capture Njgp in some unique conditions
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where the MLR model could not. However, in many loca-
tions, the MLR model produced equally good results. Addi-
tionally, MLR is less prone to overfitting and can produce
better estimates when operating outside the range of Njg
values in the training set. The MLR model also offers greater
interpretability as its variable coefficients can help identify
areas where the model is likely to fail.

Our approach produces valuable results, even though our
estimates did not fully meet the accuracy threshold suggested
by Rosenfeld et al. (2014). At locations outside the training
set, only 9 out of 35 stations had at least one ML model with
RMSElOgIO values below 0.2, meaning that, in most loca-
tions, fewer than 70 % of daily Njgp concentration estimates
fell within a factor of 1.5 of observations. Still, our method
provides useful insights and enables global Njgp estimation
where direct observations are unavailable. It complements
other observation-based methods, such as satellite-derived
approaches or the method outlined in Block et al. (2024)
and can be used to evaluate purely model-driven results. A
key advantage of our method is that it is directly constrained
with in situ measurements of Nygg rather than relying solely
on observations via data assimilation. Although our global
Nigp fields were produced for 2013, the global Njgg time se-
ries can be extended to any period covered by CAMS data
(currently 2003-2023). Moreover, this methodology could
be applied to estimate other atmospheric variables with avail-
able in situ measurements and corresponding reanalysis data.
Howeyver, it should be noted that ML models trained with ob-
servational data as the target variable cannot be expected to
represent these variables reliably in too-distinct conditions
— determining pre-industrial or future Nygp cannot be done
based on present-day observations.

Improving and better evaluating the performance and reli-
ability of the global MLR and XGB models in different en-
vironments and conditions will require additional data. We
hope future research investments and collaborations will pro-
vide access to a wider long-term measurement dataset, ex-
tending especially towards marine, tropical, Southern Hemi-
sphere, and polar areas that are underrepresented in the cur-
rent study. Although adding new data from such measure-
ment stations does not provide a global reliability estimate, it
will allow us to improve and assess the model performance
in new environments and conditions with unseen data. In-
cluding longer datasets from stations already part of this
study will also improve the models due to capturing more
variability in the atmospheric conditions at these sites. With
the larger measurement dataset, it would be beneficial and
straightforward to retrain the global ML models with the
method described in this study. We could also explore us-
ing shorter datasets, such as measurement campaign data,
for testing the models. While these datasets are too short for
model training, they could enrich the holdout set by introduc-
ing environments that lack long-term measurements.
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