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Abstract. This study presents an extended analysis of aerosol optical depth at 501 nm (AOD) in the Alpine valley of Inns-
bruck, Austria, from 2007 to 2023, and offers a comparative analysis with the Alpine station of Davos, Switzerland. AOD is
derived from ground-based sunphotometer measurements of direct spectral irradiance during daytime. The Davos Station is
part of the AErosol Robotic NETwork (AERONET), a global network providing high quality, ground based remote sensing
aerosol data and complies with the relevant requirements. The Innsbruck station does not belong to AERONET, but the AOD
retrieval algorithm is very similar. Building upon previous research conducted until 2012, the presented study aims to provide
a comprehensive understanding of the long-term trends and seasonal variations in aerosol characteristics in Central Alpine
regions. We observed the typical mid fatitude-lattitude annual cycle with a maximum in Juty-summer (July) and a minimum in
Decemberwinter (Dezember). The AOD trends per decade are for both stations are-declining, -27.9 x 1073 for Innsbruck and
-9:9--9.90 x 10~3 for Davos.

1 Introduction

The interplay between atmospheric aerosols and environmental dynamics has long been a subject of keen scientific interest, par-
ticularly in the context of climate change(ki-et-al+2022}), air quality, cloud mierophysies(Tiwari-et-al(2023))-microphysiscs
and ecological impactstZhot-et-al(2621)). Aerosol Optical Depth (AOD) is-stands as a pivotal parameter in this domain, of-
fering a quantifiable measure of aerosol concentration in the Earth’s atmosphere.
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elimate-observations-Jasstanov-et-al(2021)-This study aims to deepen our understanding of aerosol behavior in the Alpine
valleys of Innsbruck, Austria, and Davos, Switzerland. Unfortunately, other stations from AERONET (Giles-et-al2049))-like
Zugspitze and Bolzano have-only-very-limited-do not have sufficiently long measurement series.

The Alpine region, characterized by its distinct topography and climatic conditions, presents a natural laboratory for study-
ing aerosolstngeld-et-al(2001)). The complex interactions of local and regional meteorological patterns, coupled with anthro-
pogenic influences, make this area particularly interesting for long-term environmental observationsef-aerosels--enoble-et-al(2008)

3. In this context, the city of Innsbruck, a-valey-station-in-the-centre-of the Fyroleannestled in the Austrian Alps, and the high-

altitude station of Davos in Switzerland, provide contrasting yet complementary settings for examining aerosol characteristics.
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~Our research is anchored in the long history of

aerosol studies in Alpine environments, notably extending the work of Wuttke et al. (2012) and drawing comparative insights
from recent findings by Karanikolas et al. (2022). By analyzing a comprehensive 17-year AOD dataset, this study seeks to
uncover the long-term trends and seasonal variabilities of aerosols in two-these Alpine valleys. The extended timeframe of our
analysis, spanning from 2007 to 2023, allows for a detailed exploration of the temporal evolution of aerosol characteristics,
contributing to a broader understanding of their role in regional and global climatic systems.

The significance of this study lies not only in its extended temporal scope but also in its contribution to the ongoing discourse
on environmental and climatic changes. By examining the trends and patterns in AOD data, we aim to provide valuable insights
into the underlying processes driving aerosol distribution and concentration in the Alpine region. This research holds valuable
information for future environmental policies and strategies aimed at mitigating the impacts of atmospheric aerosols on climate,

ecosystems, and human health.

2 Methods

Utilizing a robust dataset collected over 17 years in Innsbruck and Davos (see Figure—-figure 1 and 2), we employ best
i i H9Wea A al-1998)1-advanced statistical methods by Sayer and Knobelspiesse (2019)
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Table 1. The number of measurements of the datasets, the time period used and the number of days and months considered as valid with the

percentage of valid days/months in brackets.

Station EatlLon-Elevation-Period N Valid Days Valid Months
Innsbruck  47:264+7-N-4138569-E-626-m-64/2007 - +6/2023 612962  2973/6117 (48.6%)  168/202 (83:273.3%)
Davos 46-81281H-N-9-84369-—E1589-m-01+/2007 - 62/2023 78124 2479/5893 (42.1%) 154/194 (79.4%)
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Figure 1. Median-AOD
there-are-no-data-avaitable-at-these-time points-in-the+7-year-time-series —from 2007 to 2023 in Innsbruck

We calculated daily median values only for days with at least three measurements (also standard in AERONET processing).
The daily AOD climatology was derived by calculating the median for each day of the year (see Figure-figure 5 and 7). From
these values the monthly geometric mean was calculated if there were at least five valid days available. With this approach

we calculated the monthly AOD from 168 out of 202 months (83.2%) in Innsbruck and 154 out of 194 months (79.4%) in

Davos (table 1) . The missing data,accounting for-approximately 20-%- of the total dataset. are not-uniformly-d bute

The-study also deals with a comparative analysis, highlighting the similarities and differences in aerosol behavior between

the two locations.

trends—for-each-month-using-ideally17-values—Our findings reveal statistically significant negative trends in AOD. Therefore
data are only available, when the sun is not obstructed by clouds.

2.1 Results
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Figure 2. AQD time series from 2007 to 2023 in Davos
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Figure 3. Innsbruck 15min AOD climatolo
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Figure 4. Innsbruck-(top)-and-Davos daily-+7-years-15min AOD climatology-The-median-daily-AOD-is-shown-(black-tine)-together-with-the
min-maxrange{grey-backeround)-
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Figure 5. Innsbruck daily AOD climatolo
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Figure 6. Davos daily AOD climatolo
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Figure 7. Monthly AOD climatolo
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Figure 8. Deseasonalized monthly AOD for Innsbruck (black dots) and Davos (blue dots). The 12 month running mean (Innsbruck - black,
Davos - blue) and the respective linear trends (dashed)

125
130
21 Results
The trends a in line with the findings of Yang et al. (2020)and-Wei-et-al-(2019)-Additionally-we-ealeulated-the- AOD-trends-per
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3 Conclusions



Table 2. AOD trends per decade x 10> for each month in Innsbruck and Davos—number-of-valid-monthsN-in-brackets—Bold-numbers

ndicatesienifics s
Month  Innsbruck trend (M)~ p—vatuerDavos-trend-(N)-p—vateerDavos trend
10 =507 (-7 0:00~-0:82—10-5(14)-6:27-03+7_
11 -202-(H-? 042-6:49-314-(13)-6:67-0432 _
12 =276 (12)-7 0:02-0:68—-0:6-(13)-6:91-6:63-2
all -27.9 (168 0:00~0:45-9:9-(154)-6:06-624-9.90

150 In summary, this study represents a significant step forward in our comprehension of aerosol climatology in the Alpine
region, offering a nuanced understanding of the environmental statistics and long-term trends of aerosols in Innsbruck and
Davos. Through this work, we endeavor to enrich the scientific community’s knowledge base, contributing to the broader
efforts in atmospheric and environmental research,

Data availability. The AOD measurements from Davos is available via Aeronet: https://aeronet.gsfc.nasa.gov/new_web/photo_db_v3/Davos.html.

155 The AOD measurements for Innsbruck are available on request.
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