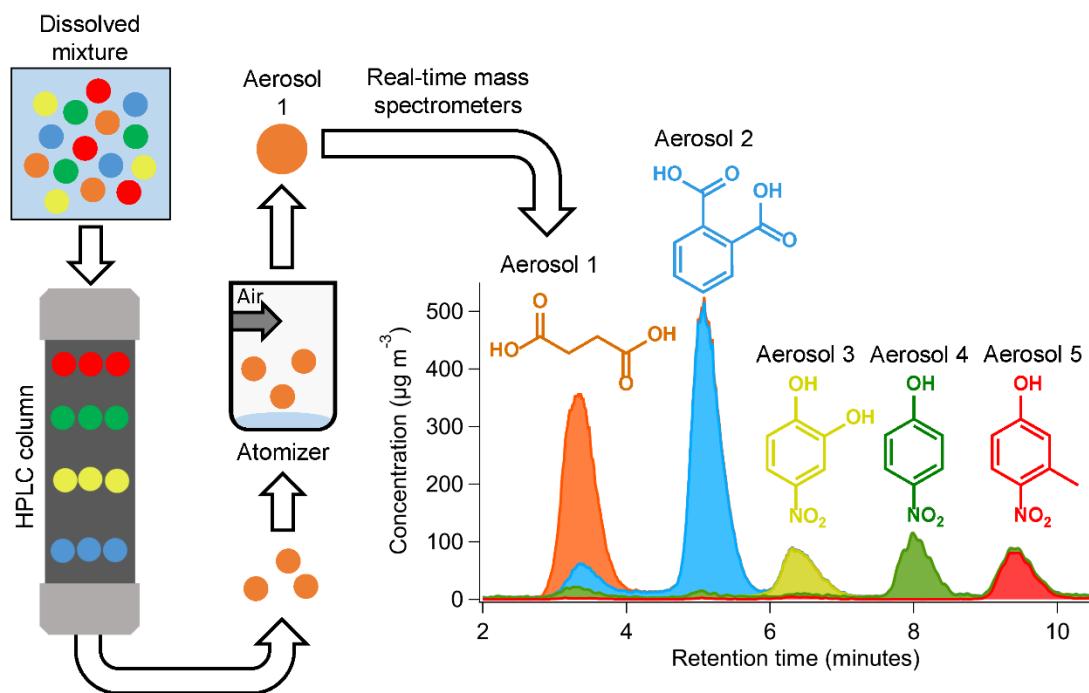


1 **A multi-instrumental approach for calibrating real-time mass
2 spectrometers using high performance liquid chromatography
3 and positive matrix factorization**

4 Melinda K. Schueneman¹, Douglas A. Day¹, Dongwook Kim¹, Pedro Campuzano-Jost¹, Seonsik
5 Yun¹, Marla P. DeVault¹, Anna C. Ziola¹, Paul J. Ziemann¹, and Jose L. Jimenez¹

6 ¹Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of
7 Colorado, Boulder, CO 80309, USA


8

9 Corresponding Author: Jose L. Jimenez, jose.jimenez@colorado.edu

10

11 **Abstract.** Obtaining quantitative information for molecular species present in aerosols from real-time mass
12 spectrometers such as an extractive electrospray time-of-flight mass spectrometer (EESI) and an aerosol mass
13 spectrometer (AMS) can be challenging. Typically, molecular species are calibrated directly through the use of pure
14 standards. However, in some cases (e.g. secondary organic aerosol [SOA] formed from volatile organic compounds
15 [VOCs]) direct calibrations are impossible, as many SOA species can either not be purchased as pure standards or
16 have ambiguous molecular identities. In some cases, bulk OA sensitivities are used to estimate molecular
17 sensitivities. This approach is not sufficient for EESI, which measures molecular components of OA, because
18 different species can have sensitivities that vary by a factor of more than 30. Here, we introduce a method to obtain
19 EESI calibration factors when standards are not available, and we provide a thorough analysis of the feasibility,
20 performance, and limitations of this new technique. In this method, complex aerosol mixtures were separated with
21 high performance liquid chromatography (HPLC) followed by aerosol formation via atomization. The separated
22 aerosols were then measured by an EESI and an AMS, which allowed us to obtain sensitivities for some species
23 present in standard and SOA mixtures. Pure compounds were used to test the method and characterize its
24 uncertainties, and obtained sensitivities were consistent within $\pm 20\%$ when comparing direct calibrations vs HPLC
25 calibrations for a pure standard, and within a factor of two for a standard mixture. In some cases, species were not
26 completely resolved by chromatography, and positive matrix factorization (PMF) of AMS data enabled further
27 separation. This method should be applicable to other real-time MS techniques. Improvements in chromatography
28 are possible that would allow better separation in complex mixtures.

29 TOC figure

30

31 **1 Introduction**

32 Atmospheric aerosols are a complex, and often poorly understood, component of Earth's atmosphere. Aerosols have
33 significant effects on both human and ecosystem health, and are significant contributors to anthropogenic climate
34 forcing (Dockery et al., 1996; Lighty et al., 2000; Lohmann et al., 2004; IPCC, 2013). Organic aerosol (OA) is a
35 substantial component of global aerosol levels (Kanakidou et al., 2005; Zhang et al., 2007; Jimenez et al., 2009).
36 Since the early 2000s an important instrument for measuring OA concentrations in real time has been the aerosol
37 mass spectrometer (AMS) (Jayne et al., 2000; Canagaratna et al., 2007) and its high-resolution version (HR-AMS)
38 (DeCarlo et al., 2006). Soft ionization aerosol mass spectrometers, such as the extractive electrospray time-of-flight
39 mass spectrometer (EESI ToF MS, EESI hereinafter), have more recently become important tools for obtaining
40 more detailed OA speciation (Lopez-Hilfiker et al., 2014, 2019; Eichler et al., 2015).

41 EESI can detect individual molecular ions (referred to henceforth as either molecular ions or individual
42 species, even if they may comprise several isomers) from the particle phase with 1 s time resolution (Lopez-Hilfiker
43 et al., 2019; Pagonis et al., 2021). EESI has been used to measure aerosols in urban areas (Qi et al., 2019, 2020;
44 Stefenelli et al., 2019; Kumar et al., 2022), in biomass burning (Qi et al., 2019; Pagonis et al., 2021), in cooking
45 emissions (Qi et al., 2019; Brown et al., 2021), and for chamber studies of secondary OA (SOA) formation (Liu et
46 al., 2019; Pospisilova et al., 2020). Many studies have illustrated the low detection limits, limited fragmentation, and
47 other capabilities of the EESI; e.g. Lopez-Hilfiker et al. (2019) and Pagonis et al. (2021).

48 However, obtaining quantitative information for individual species from EESI measurements of complex
49 mixtures of unknown species can be challenging. This is due to each species having different and often hard to
50 predict sensitivities (Law et al., 2010; Lopez-Hilfiker et al., 2019; Brown et al., 2021; Wang et al., 2021). In
51 addition, EESI measures molecular ions, but can in some cases cause fragmentation, such as due to loss of HNO_3
52 from nitrates (Liu et al., 2019). For SOA from a single precursor, the bulk sensitivity compared to SOA formed from
53 a different precursor has been shown to vary by a factor of 15 or more (Lopez-Hilfiker et al., 2019). Different
54 studies also show that the bulk sensitivity for OA formed from different emission sources, (e.g. cooking, biomass
55 burning,) can vary by a factor of ~ 10 (Qi et al., 2019; Stefenelli et al., 2019; Brown et al., 2021). For pure organic
56 standards, the sensitivity can vary by a factor of 30 or more (Lopez-Hilfiker et al., 2019). Instead of directly
57 measuring compound sensitivity, some groups use machine learning (Liigand et al., 2020) or thermodynamic
58 modeling (Kruve et al., 2014) to approximate instrument response factors for individual species. Other studies use
59 bulk calibration factors for complex mixtures as an approximation for quantification (Tong et al., 2022).

60 Sensitivities can vary due to differences in analyte solubility (Law et al., 2010), EESI working fluid
61 composition, sample composition, and different instrument conditions and settings, including polarity and changes
62 in inlet pressure (Lopez-Hilfiker et al., 2019; Pagonis et al., 2021). Calibrating the EESI for individual species can
63 be a challenging task, especially when standards are unavailable for most atmospheric oxidation products. In
64 addition, OA from chamber experiments or field studies often contains unidentified molecular ions, or those whose
65 species identity is ambiguous.

66 Several calibration methods have been applied to EESI. For example, direct calibrations were performed
67 for many organic standards in Lopez-Hilfiker et al. (2019), for 4-nitrocatechol (EESI-) and levoglucosan (EESI+) in

68 Pagonis et al. (2021) to track sensitivity during each aircraft flight, and levoglucosan for regular sensitivity tracking
69 during an indoor cooking study (and several other compounds less frequently and bracketing the campaign) in
70 Brown et. al. (2021). During research field studies, often only one or two species are calibrated frequently, and the
71 rest are quantified using relative response factors measured less frequently (Qi et al., 2019; Brown et al., 2021;
72 Pagonis et al., 2021).

73 A recent study combined measurements from the Vocus Proton Transfer Mass Spectrometer (Vocus),
74 AMS, and EESI to measure speciated response factors without the need for standards. In that study, SOA was
75 generated using an oxidation flow reactor (OFR). Following SOA formation, the Vocus measured the gas phase
76 species, and the AMS and EESI measured the bulk and speciated particulate phase, respectively. EESI response
77 factors were obtained through comparison to decreasing gas phase mixing ratios measured by the Vocus as they
78 condensed to the particle phase (Wang et al., 2021).

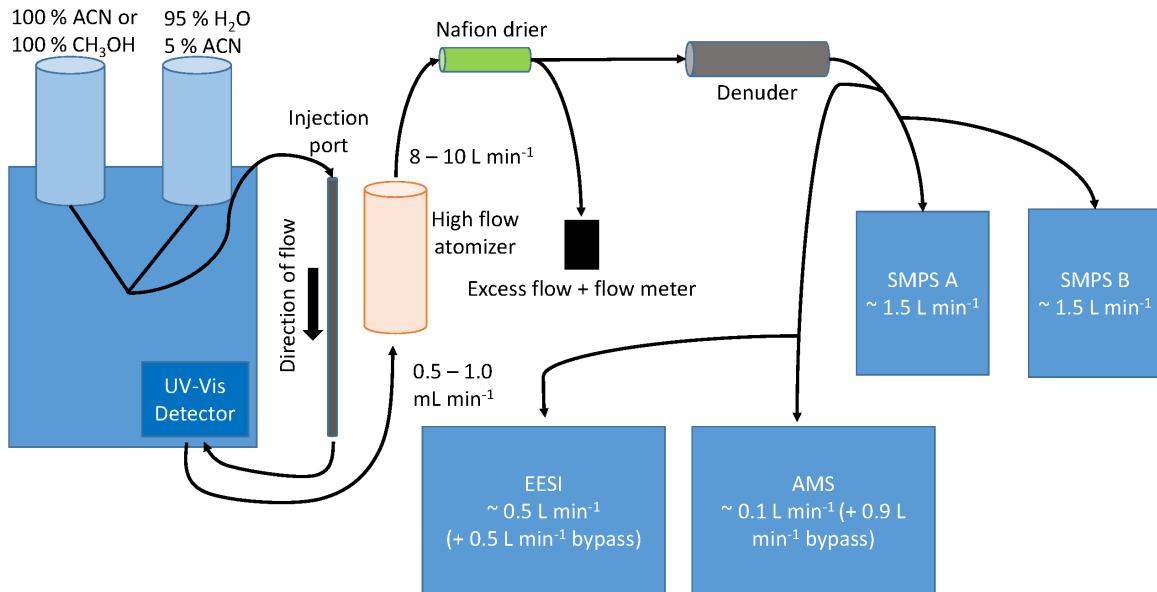
79 Another method for obtaining calibration information is positive matrix factorization (PMF). PMF is a type
80 of factor analysis that allows approximate apportioning of aerosol mass measured with online mass spectrometers
81 and other instruments to atmospheric sources or level of oxidation (Zhang et al., 2005; Lanz et al., 2007; Ulbrich et
82 al., 2009). To our knowledge, PMF has not been used with AMS data alone to obtain mass spectra and time series
83 for individual molecular components. Separation with PMF alone could be difficult for ambient or chamber
84 experiment data since most compounds likely covary in time and thus would not be statistically resolvable (Craven
85 et al., 2012). Direct calibrations have been conducted to generate high resolution AMS mass spectra for individual
86 species (Ulbrich et al., 2019). A combination of AMS and PMF has been used to obtain quantitative information for
87 EESI bulk measurements or PMF factors (Qi et al., 2019, 2020; Kumar et al., 2022). PMF has also been used on a
88 combined data set consisting of both EESI and AMS data (Tong et al., 2022).

89 To our knowledge, PMF has not been applied previously to AMS and EESI chromatographically separated
90 data. Running PMF on chromatographic data may be able to generate species specific mass spectra and time series
91 for compounds that cannot be obtained as pure standards. PMF has been applied in the past to gas chromatography
92 mass spectrometry (GC MS) data (Zhang et al., 2014, 2016; Gao et al., 2018), but not to high performance liquid
93 chromatography (HPLC) data, which is better suited for oxidized SOA species than GC, to our knowledge. AMS
94 detection following HPLC separation has been conducted previously (Farmer et al., 2010) to explore AMS spectra
95 of the separate compounds, but not for quantification. HPLC has not been previously combined with EESI or PMF,
96 to our knowledge. Further, HPLC must be used here because the mass spectrometric detection needs to be much
97 faster than the chromatographic time scale (on the order of seconds). Otherwise, this method is not applicable, and
98 the different species separated by the chromatography would not be sufficiently resolved for speciated detection
99 with the EESI and AMS.

100 Here, for the first time, we demonstrate a method combining HPLC, atomization, and detection by EESI,
101 AMS, and scanning mobility particle sizer (SMPS). The method was validated by running pure standards, standard
102 mixtures, and chamber SOA. The analyte peaks measured with each instrument were integrated, and calibration
103 factors for separated species were calculated for the EESI (CF_x^E). The AMS response factor (CF_x^A , or RIE CE, the
104 product of the relative ionization efficiency and collection efficiency) and the atomic oxygen to carbon (O:C) ratio

105 for different analytes were quantified. EESI calibration factors (CF_x^E) for individual compounds were determined
106 and compared to literature values. In cases where HPLC did not fully resolve all analytes, PMF was run on the AMS
107 mass spectral matrices to obtain further compound separation.

108 **2 Methods**


109 **2.1 Chamber experiments and filter mass collection**

110 SOA was generated using the procedure of DeVault et. al. (2022). Briefly, chamber experiments were conducted in
111 an 8.0 m³ Teflon chamber (Claflin and Ziemann, 2018; Bakker-Arkema and Ziemann, 2021). The temperature (23
112 °C) and atmospheric pressure (0.83 atm) were constant. Ammonium sulfate seed was added to the humidified
113 chamber (RH = 55 %), followed by β-pinene, which was evaporated from a heated glass bulb. In the dark, N₂O₅ was
114 added as the NO₃ source, from the sublimation of cryogenically trapped solid N₂O₅. During these experiments, ~
115 372 - 1378 µg m⁻³ SOA was made within the large reaction chamber. This material was collected on a filter for ~
116 120 min at a flow rate of 14 L min⁻¹. Following dissolution in solvent, ~16 - 56 µg of SOA was injected into the
117 HPLC. Further discussion is included in Sect. S4. The experiment was modeled after Claflin et. al. (2018).

118 Following SOA formation, a 0.45 µm Millipore Fluoropore PTFE filter was used to collect SOA. The
119 combined filter and aerosol was weighed after aerosol collection. The combined filter and aerosol was exposed to
120 minimal ambient air, and was always handled with artificial lighting turned off and outdoor blinds drawn. After
121 weighing, each filter was extracted in 2 mL of HPLC grade ethyl acetate (EtAc) twice. The 4 mL aerosol
122 extract/EtAc mixture was dried using pure N₂. Once the EtAc was evaporated, the leftover material was dissolved in
123 HPLC grade acetonitrile (ACN) and stored in a freezer at - 23 °C (DeVault et al., 2022). The extract used here was
124 the same as DeVault et. al. (2022), and was 1 year old at the time of analysis. DeVault et al. (2022) showed that this
125 SOA is composed entirely of acetal dimers, which are exceptionally stable. Therefore, the SOA is unlikely to have
126 changed significantly over this period.

127 **2.2 High Performance Liquid Chromatography (HPLC)**

128 HPLC separation was performed using a Shimadzu Prominence HPLC, coupled to a Zorbax Eclipse XDB-C18
129 column (250 × 4.6 mm with 5 µm particle size). A Nexera X2 SPDM30A UV / vis photodiode array detector was
130 used to generate absorbance chromatograms. The column stationary phase was designed for reverse mode, where
131 smaller, more polar species had shorter elution times. Separated species were measured first at λ = 210 nm and λ =
132 254 nm using an UV-Vis diode array detector with a reference wavelength of 300 nm. Separated chemical
133 components then flowed into a high flow Collison atomizer, forming droplets and then aerosols consisting solely of
134 the SOA compounds after evaporating the HPLC solvent in a Nafion drier. The aerosols were then measured by a
135 suite of instruments, shown in Fig. 1, and pictured in Fig. S1. Tubing delay times are also included in Table S1.
136

137

138 **Figure 1. HPLC schematic. Left, HPLC containing a column and a UV-Vis detector. Following separation, the column**
 139 **effluent was sent to an atomizer, dried, and the aerosol was detected by each of the instruments shown.**

140

141 A maximum volume of 50 μ L ACN / aerosol mixture was injected into the column at once. At the beginning of each
 142 day, the HPLC solvent lines (HPLC grade acetonitrile and HPLC grade water) were flushed to remove any air
 143 bubbles that may affect elution. Following this, a clean cycle was run by injecting 50 μ L HPLC grade ACN into the
 144 reverse phase column. This ensured previous HPLC run species did not contaminate new runs. The first run of the
 145 day, post cleaning cycle, was a 4-nitrocatechol / 4-nitrophenol mixture (dissolved in ACN). These species were well
 146 characterized by the particle phase instruments and have measurable absorbances at the recorded UV wavelengths.

147 For each experiment, the mobile phase consisted either of an ACN / water mixture or an ACN / CH_3OH /
 148 water mixture. The mixture varied in relative concentrations of each solvent over the course of each HPLC run.
 149 Most experiments were started at 95 % water / 5 % ACN (solvent mixture A). The mobile phase became less polar
 150 over time. For some systems, solvent B (pure acetonitrile) replaced solvent system A as time went on. For other
 151 systems, solvent C (pure methanol) was used. Each standard and / or SOA system was run under different
 152 conditions, depending on the separability of different components.

153 For the standard solution run, a mixture of solvent A and solvent B was used. Using a flow of 1.0 mL min^{-1} ,
 154 solvent B was increased from 0 % to 35 % in 1 min, then 35 % - 40 % for 5 min, followed by 40 % - 50 % for 3
 155 min, and 50 % - 100 % for 2 min, this is also shown in Fig. S2a. For the β -pinene SOA extract, the flow rate was set
 156 to 0.5 mL min^{-1} , and a mobile phase gradient started at 20 % solvent C for 2 min, then increased at a rate of 6 %
 157 min^{-1} up to solvent C of 50 %, followed by an increase of 3 % min^{-1} to a concentration of 80 % solvent C, then 0.75
 158 % min^{-1} until 95 % solvent C, held at 95 % C for 20 min and increased by 1.7 % min^{-1} to 100 %, following 10 min at
 159 100 % solvent B, shown in Fig. S2b (DeVault et al., 2022).

160 **2.3 Standards for HPLC measurements**

161 Two standard solutions of atmospherically relevant species were made for this study. Standard solution 1 contained
162 0.4 % (by mass) 3-methyl-4-nitrophenol, 0.2 % phthalic acid, 0.5 % 4-nitrophenol, 0.6 % succinic acid, and 0.1 % 4-
163 nitrocatechol, dissolved in HPLC grade acetonitrile. Solution 2 contained 8 species: 0.3 % phthalic acid (by mass),
164 0.3 % L-malic acid, 0.1 % succinic acid, 0.3 % citric acid, 0.3 % levoglucosan, and 0.2 % 4-nitrocatechol in HPLC
165 grade acetonitrile. Source information and calculated saturation mass concentrations for all species are shown in
166 Table S2.

167 Each species was chosen for its relevance in biomass, urban, or manufacturing processes. 3-methyl-4-
168 nitrophenol, 4-nitrophenol, 4-nitrocatechol and levoglucosan are cyclic C₆ carbon species found in biomass burning.
169 Succinic acid, L-malic acid, and phthalic acid are acids of secondary origin found in urban atmospheres. Citric acid
170 is found in food and / or medicine. A critical property of these compounds is that they absorb in the UV-Vis,
171 whereas most SOA does not. Nitrates and aromatics have strong absorbance and carboxylic acids have a very weak
172 absorbance.

173 **2.4 Aerosol Generation and Sampling System**

174 The HPLC was coupled to particle phase measurements by using a high flow Collison atomizer. First, a Teflon line
175 was attached to the waste port of the HPLC. The flow from the HPLC was 0.5 - 1 mL min⁻¹, all of which was sent to
176 the atomizer. The atomizer operated by first introducing pressurized compressed air (~ 20 psi) into a small chamber
177 (473 mL jar). Perpendicular, sample flow at a rate of 0.5 or 1 mL min⁻¹ intersected the pressurized air. This led to
178 the generation of particles of a consistent size distribution, and provided a total flow ranging from 8 to 10 L min⁻¹.
179 Instrument specific flows were measured daily.

180 Following atomization, ~ 10 L min⁻¹ of aerosol / solvent flow was sent through a Nafion dryer before being
181 sent through an activated carbon denuder. This denuder is in a stainless steel, ~ 1 inch diameter and 8 inch length
182 tube, composed of activated carbon honeycomb cross sections. Flow was then sent into each particle instrument.
183 Solvent was efficiently removed (> 99.0 %, Pagonis et. al. (2021)) using the carbon denuder. Acetonitrile (a solvent
184 used in the HPLC system) was monitored using the EESI. Denuder regeneration was typically only necessary after
185 the first 4 h of each experiment.

186 Residence times in different parts of the system were estimated to enable synchronizing the aerosol
187 instrument observations and the measured UV-Vis absorbances. Calculations shown in Table S1 suggest that a delay
188 of at least 40 s should be observed between the UV-Vis measurement and detection with the aerosol instruments,
189 which is consistent with the measured delay. Retention times for EESI, AMS, and SMPS may differ from each other
190 by 1 - 2 s, depending on the residence times in the tubing. In addition, bypass flows (shown in Fig. 1) were added to
191 the EESI and AMS to reduce residence times in the tubing and thus particle losses or evaporation. These delay
192 differences were handled by shifting instrument data by the delay times.

193 **2.5 Description of particle measurements**

194 **2.5.1 Extractive Electrospray Time of Flight Mass Spectrometry (EESI)**

195 The EESI uses a soft ionization technique that detects particle phase analytes based on their solubility and proton
196 affinity / adduct formation stability (Lopez-Hilfiker et al., 2019). Briefly, particle / gas sample flow was sent into
197 the EESI source at ~ 0.5 - 1 L min $^{-1}$, where gases are removed using a charcoal denuder (> 99 % removal efficiency
198 for acetic acid, when regenerated daily) (Tennison, 1998; Pagonis et al., 2021). The aerosol inlet for the instrument
199 used in this study was pressure controlled (Pagonis et al., 2021), and was run at 575 mbar. While designed for
200 aircraft applications, the pressure controlled inlet provides better spray and signal stability as it shields the spray
201 from small pressure perturbations from changes in upstream inlet flow conditions. This includes perturbations
202 caused by switching between different sampling modes and plumbing pathways. Here, the working fluid consisted
203 of a mixture of 25 % milli-Q water and 75 % (by volume) HPLC grade methanol. The EESI was run in two polarity
204 modes. The positive polarity mode (henceforth “EESI $^{+}$ ”) contained 200 ppm of sodium iodide (NaI) (Pagonis et al.,
205 2021). This working fluid generally forms Analyte-Na $^{+}$ adducts. The negative polarity mode (EESI $^{-}$) was doped
206 with 0.1 % (by volume) formic acid (Chen et al., 2006; Gallimore and Kalberer, 2013; Pagonis et al., 2021). Species
207 with a lower proton affinity than formic acid donate a proton and become negatively charged. This ionization mode is
208 generally sensitive to acidic species that can readily donate a proton and become anionic.

209 For both polarities, a fused silica capillary (TSP Standard FS tubing, 50 μ m ID, 363 μ m OD) was used to
210 transport working fluid solution from a pressurized (250 - 300 mbar above ambient) fluid bottle. Typical resolution
211 at m/z 150 was 4000, and mass spectra were saved every second.

212 The mass concentration of a species (μ g m $^{-3}$) can be quantified from its EESI signal (I_x ion counts s $^{-1}$) as
213 (Lopez-Hilfiker et al., 2019):

$$214 \quad Mass_x = I_x \left(\frac{MW_x}{RF_x} \right) \cdot \frac{1}{F} \quad (1)$$

215 MW_x is the molecular weight of species x , F is the flow rate (in L min $^{-1}$), and RF_x is the combined response factor.
216 There are fundamental parameters for EESI signal which are described further in Lopez-Hilfiker et. al. (2019). Here,
217 we define a new variable, EESI calibration factor (CF_x^E , in μ g m $^{-3}$ counts $^{-1}$ s), such that

$$218 \quad Mass_x = I_x \cdot CF_x^E \quad (2)$$

219 Generally, CF_x^E is directly determined by direct calibrations with standards, when possible. Here, CF_x^E was
220 determined by either direct calibrations using either commercially available standards or HPLC separated analytes.
221 Calibration factors are reported as absolute values (in units of counts s $^{-1}$ μ g $^{-1}$ m 3) and also relative to 4-nitrocatechol
222 for EESI $^{-}$ and levoglucosan for EESI $^{+}$ (unitless).

223 2.5.2 High Resolution Aerosol Mass Spectrometer (HR AMS)

224 A high resolution time of flight aerosol mass spectrometer (hereinafter AMS) (DeCarlo et al., 2006; Canagaratna et
225 al., 2007) was used to obtain 1 Hz chemical composition for organic aerosol (OA) and nitrate aerosol (pNO $_3$). The
226 AMS was run with an inlet flow of 0.1 L min $^{-1}$, and a bypass flow of ~ 1.4 L min $^{-1}$. The AMS was run exclusively in
227 “fast mode” (Kimmel et al., 2011; Nault et al., 2018), and size distributions were not recorded. AMS backgrounds

were measured for 6 s every 52 s. Outside of HPLC runs, the AMS background was < 0.1 $\mu\text{g m}^{-3}$. Between eluting peaks additional backgrounds were taken to test for solvent residue and / or residual influence from previous HPLC runs. These backgrounds were generally < 2 $\mu\text{g m}^{-3}$ for both the AMS and the SMPSs. The detection limit (DL) and limit of quantification between eluting peaks was 0.7 $\mu\text{g m}^{-3}$ and 2.2 $\mu\text{g m}^{-3}$, respectively, suggesting that background subtracted concentrations above 2.2 $\mu\text{g m}^{-3}$ can be accurately measured. The latter were conducted by flowing the sampler air through a particle filter. AMS data was analyzed in the ToF AMS analysis software (PIKA version = 1.25F, Squirrel = 1.65F) (DeCarlo et al., 2006; Sueper, 2023) within Igor Pro 8 (Wavemetrics, Lake Oswego, OR). When AMS sensitivities were not obtained from direct measurements, the AMS OA relative ionization efficiency (RIE) and collection efficiency (CE) were assumed to be 1.4 (OA_{default}, (Canagaratna et al., 2007)) and 1, respectively. The AMS NO₃ RIE * CE (NO₃, _{default}) was assumed to be 1.1 (Canagaratna et al., 2007). Data herein is reported in $\mu\text{g m}^{-3}$, using Boulder pressure (P = 830 mbar) and average lab temperatures ($\sim 20^\circ\text{C}$).

Here, the quantification of different particle phase species that have been separated by HPLC (and thus are mostly in single component particles) is assessed for the AMS. This is a function of RIE_X * CE_X (a.k.a. "AMS response factor", or CF_x^A) for a species X. Direct AMS calibration has been reported for many OA species (Slowik et al., 2004; Dzepina et al., 2007; Jimenez et al., 2016; Xu et al., 2018; Nault et al., 2023). An RIE of 1.4 is typically applied to ambient organic aerosols (Canagaratna et al., 2007), which has been shown to perform well in most outdoor intercomparisons (Jimenez et al., 2016; Guo et al., 2021). Laboratory measurements typically require specific calibrations, as RIE can be higher for some compounds and mixtures (Jimenez et al., 2016; Xu et al., 2018; Nault et al., 2023). CE can vary considerably, from CE = 0.15 to a CE = 1 (Docherty et al., 2013).

The material densities of the known standards were determined by running the AMS in PToF mode and calculating the density as d_{va} / d_m , where d_{va} is the aerodynamic vacuum diameter and d_m is the SMPS measured mobility diameter (DeCarlo et al., 2004). Calculated densities are shown in table S2. For the unknown species present in the SOA, densities were estimated using the atomic ratio of oxygen plus nitrogen to carbon ([O+N]:C) and H:C, as demonstrated in Day et. al. (Day et al., 2022), which builds upon the method of Kuwata et. al. (Kuwata et al., 2012) which did not account for nitrate content. The O:C ratio attributed to the non-nitrate OA was calculated per Canagaratna et. al. (2015). The organic nitrate contribution was quantified per Day et. al. (2022). All nitrate here was assumed to be from organic nitrate functional groups, as the aerosol studied here likely contained little inorganic nitrate. For the density calculation, the total nitrate was multiplied by the ratio of the molecular weights of NO₂:NO₃ (46 / 62) and converted into a molar concentration using the molecular weight of NO₂ (46 g mol⁻¹). Only the NO₂ functionality was included for the density calculation, since the nitrate oxygen bonded to the carbon is expected to typically be included as part of the standard AMS OA O:C estimation (Farmer et al., 2010). Carbon was also converted into a molar concentration using the molecular weight (12 g mol⁻¹). That organic nitrogen to organic carbon ratio was added to the standard AMS OA O:C ratio to obtain the organic nitrate corrected [O+N]:C ratio.

For isolated peaks that contained organic nitrate, the organic nitrate (NO₃) concentration was added to the AMS OA to get the total measured AMS mass. The SMPS mass was then compared to the AMS mass calculated with the default CF_x^A , and the correct CF_x^A was determined with Eq. 3 (further details in Sect. 2.7).

264
$$CF_x^A = \frac{OA_{\text{default}} + NO_{3,\text{default}}}{\text{SMPS mass}} \quad (3)$$

265 For HPLC peaks composed of multiple species (like in the β -pinene SOA sample), the average CF_x^A was calculated
 266 by adding the average NO_3 contribution ($\sim 5\%$) to the measured AMS OA contribution (Fig. S3). This CF_x^A was
 267 then applied to the AMS PMF organic chromatographic time series, in order to determine CF_x^E . For species not
 268 containing any nitrate, the $NO_{3,\text{default}}$ was set to 0.

269 We note that some recent work has suggested that the sensitivity of organic nitrate functional groups may
 270 be lower than for ammonium nitrate (for which the nitrate is calibrated by default in AMS data processing). Thus, a
 271 correction of $\sim 62 / 46$ may be more appropriate here for computing nitrate functional group mass concentrations
 272 (Takeuchi et al., 2021). However, due to the small nitrate contribution overall, such a correction was not applied.

273 **2.5.3 Scanning Mobility Particle Sizer (SMPS)**

274 Two SMPSs were run with a 20 s offset during HPLC experiments (consisting of all TSI, Inc components) in order
 275 to improve the time resolution of the total particle volume measurement. For both SMPSs, a 3081 differential
 276 mobility analyzer (DMA) was run with a 3080 electrostatic classifier. Each was coupled with either a 3776
 277 condensation particle counter (CPC) (referred to as SMPS A) or a 3775 CPC (SMPS B). Both systems were run in
 278 the CPC “high flow” mode. Sample flow rates were nominally set to 1.5 L min^{-1} , but the actual (measured flow) was
 279 1.43 and 1.49 L min^{-1} for the 3776 and 3775, respectively. DMA sheath flows were set to 6.0 L min^{-1} . Data were
 280 compared to that acquired in a reference mode, with a sample flow of 0.3 L min^{-1} , a sheath flow of 3.0 L min^{-1} , and
 281 120 s scans. Testing was done to ensure that number and volume distributions and integrated concentrations
 282 matched between the reference and fast scanning modes, shown in Fig. S4 and discussed in depth in Sect. S3. The
 283 SMPSs were also run concurrently during an HPLC run to confirm that data from both instruments matched (Fig.
 284 S5). Overall, the SMPSs in the reference and fast modes agreed within 10 %. Flows were measured every day, and
 285 delay times (from the SMPS inlet to the CPC detection, which affect sizing) were calculated when changes in
 286 plumbing were made. Further details on SMPS delays can be found in Table S3.

287 **2.5.4 Direct Calibration Procedure**

288 Direct calibration refers to the standard method of generating monodisperse aerosol from a calibrant solution with a
 289 Collison atomizer (TSI model 3076) drying with a Nafion dryer, size selecting at 275 nm with a TSI 3080
 290 electrostatic classifier / 3081 DMA, removing double charged particles with an impactor, measuring the particle
 291 concentration with a 3775 CPC, and measuring with the EESI and / or AMS. The EESI and AMS sensitivities were
 292 obtained by comparing their signals to the particle mass calculated from the known particle volume, estimated
 293 density, and CPC particle concentration.**2.6 Positive Matrix Factorization (PMF)**

294 Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994; Paatero, 1997) is a bilinear deconvolution model
 295 that relies on the assumption of mass balance with components with constant spectral profiles. Briefly, time series
 296 for signals at individual m/z ’s are entered into a two dimensional matrix with m rows (points in time) and n columns

297 (*m/z*'s) (Ulbrich et al., 2009; Kumar et al., 2022). PMF works to minimize the squared weighted residuals between
298 the measured and reconstructed matrices, producing multiple potential solutions that could explain different
299 chemical or physical sources in a given data set, along with the total residual of each solution.

300 The model is solved using PMF2 (Paatero, 2007) and the multilinear engine, developed by Paatero et. al.
301 (1999), run from the PMF Evaluation tool (“PET”) software v3.08 in Igor Pro v8 (Wavemetrics, Lake Oswego, OR).
302 Choosing the best PMF solution always has a subjective component, as it is usually impossible to know the
303 “correct” number of factors that completely capture a complex data set (Ulbrich et al., 2009). Several methods can
304 be used to assess the validity of a given solution. First, the Q-value (Q), which is the total sum of the error-weighed
305 square residuals for a data set, is used. Q_{exp} is the expected value of Q if all residuals are due to random errors with
306 the estimated precision at each point. If the individual data points in a solution are fit so that the residuals are
307 consistent with random noise, then $Q / Q_{exp} \sim 1$. Note that this also requires accurate estimation of the precision
308 (random error) in the entire data matrix. In some situations, PMF cannot explain a data set within an acceptable
309 error. In these situations, $Q / Q_{exp} \gg 1$. All solutions here have $Q / Q_{exp} \leq 1$.

310 The second criteria for picking the best PMF solution is by exploring the time series and mass spectra for a
311 given solution for different approximate rotations (FPEAK values) (Lee et al., 1999; Lanz et al., 2007; Ulbrich et al.,
312 2009). Simply, PMF rotations are non-unique solutions that are represented across multiple factors. In a real world
313 example, a source profile (for example, biomass burning OA), might split across multiple PMF factor's time series
314 and/or mass spectra, despite only being from a singular source. Factor splitting can sometimes reduce residuals, and
315 mathematically may appear as a more correct solution for a particular dataset. This is where the user must
316 thoroughly assess different solutions, specifically those with $Q / Q_{exp} \sim 1$.

317 PMF solutions chosen here are based on the above criteria and a third: the time series of the residuals. In a
318 chromatogram, the shape of the peaks is generally known. Here, four different instruments generate unique
319 chromatograms: UV-Vis, AMS, EESI, and the SMPSs. Thus, across those four instruments, the shape of the
320 chromatogram was fairly well constrained. When choosing solutions here, the shape of the chromatogram was
321 compared to the time series of the residuals. If the residuals showed significant peaks, then that was an indicator that
322 not enough factors were used to represent the complete chromatogram and all of the factors therein.

323 The $m \times n$ matrix for AMS data was generated for HR ions using the PMF export option in the PIKA data
324 analysis software. Briefly, unit mass and high resolution AMS data were first fit as described in Sect. 2.5.2. After
325 confirming that all ions of interest were well fit, the organic data was exported into an $m \times n$ matrix (both signal and
326 precision matrices). Any HR ions not associated with the following families: C_x, CH, CHO₁, and CHO_{gt1} were
327 removed, as NO₃ was not included in the PMF input, and the included families were the only measured ions with
328 substantial signal during the experiments included here. PMF was run from 1 - 20 factors. Rotations (FPEAKS)
329 were enabled, ranging from - 1.0 to 1.0, in steps of 0.2.

330 **2.7 Calculating calibration factors for species using the multi-instrumental method**

331 For unknown species (or known species with an unknown AMS response factor) the following method was used to
332 obtain EESI and AMS calibration factors:

333 1. Calculation of composition dependent density using the measured elemental composition or d_{va} / d_m
334 measured densities from AMS and SMPS data.

335 2. SMPS size distributions are fit with a lognormal curve, and integrated volume concentrations are obtained.

336 3. SMPS integrated volume time series were multiplied by the density, to produce the reference mass
337 concentration time series.

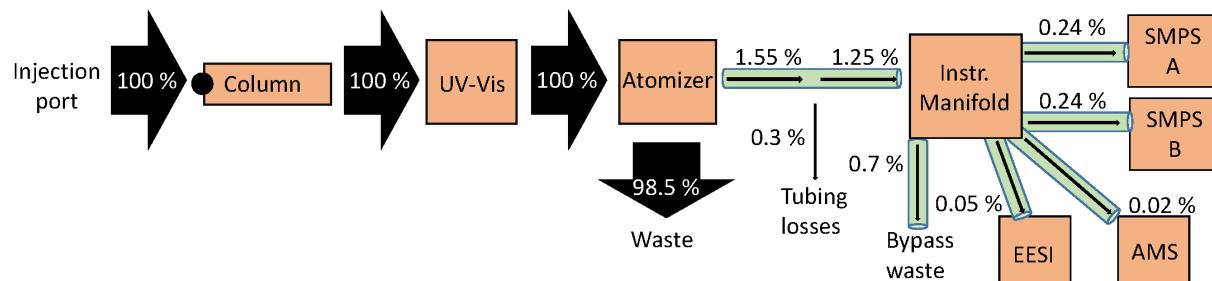
338 4. The high time resolution AMS OA and NO_3 time series are obtained for an assumed $\text{RIE} * \text{CE} = 1.4$
339 ($\text{OA}_{\text{default}}$) and $\text{RIE} * \text{CE} = 1.1$ ($\text{NO}_3, \text{default}$).

340 5. The SMPS mass concentration time series and the AMS OA+ NO_3 time series, for an individual
341 chromatographic peak, are fit with a Gaussian distribution

342 6. The AMS and SMPS Gaussian distributions are integrated ($\mu\text{g m}^{-3} \text{ s}$).

343 7. The CF_x^A was obtained using the ratio of the integrated SMPS to the integrated AMS time series fits (Eq.
344 3).

345 8. The time series for the EESI m/z was fit with a Gaussian and integrated along the retention time.

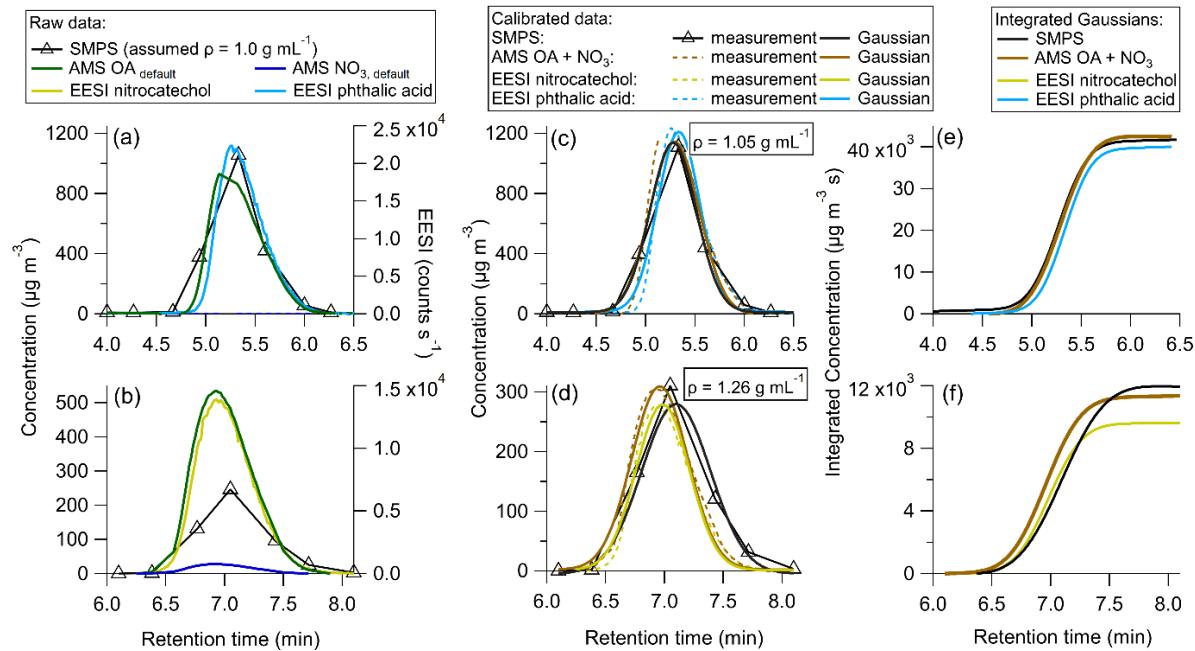

346 9. The integrated Gaussian for the EESI m/z was divided by the integrated AMS (OA+ NO_3 , after AMS
347 calibration by the SMPS) or SMPS Gaussians to obtain CF_x^E (counts $\text{s}^{-1} \text{ m}^{-3} \mu\text{g}^{-1}$).

348

349 In step 9, the SMPS was used as the EESI reference for calculating CF_x^E when the analytes were resolved from
350 chromatography alone. As discussed for the mixtures shown in Sect. 3.1, 3.2, and 3.3, we never obtained complete
351 chromatographic separation. In cases of overlapping analytes, the SMPS used here does not have the time resolution
352 to be used as the EESI reference. Instead, we referenced the EESI to the AMS by first calibrating the total AMS
353 signal to the total SMPS signal for mixed peaks. We then used PMF results for the corrected AMS data and
354 compared individual AMS PMF factors time series to EESI time series to calculate CF_x^E .

355 **3 Results**356 **3.1 Mass Balance of the Analyte in the Experimental System**

357 There was substantial plumbing between the injected sample and the instruments measuring the analyte, where
 358 losses can occur (Fig. 1, Table S1). To better understand the experimental system, the mass flux was calculated
 359 using the known, injected mass as well as the tubing diameters, lengths, and flow rates, as shown in Fig. 2.
 360


361
 362 **Figure 2. Mass flux across the multi-instrumental setup. Arrows are sized by the percentage of analyte mass, which is**
 363 **included alongside each arrow. EESI and AMS have bypass lines (represented as the total by 0.7 % bypass waste).**
 364 **Percentages shown are for the actual measured mass percent. Tubing details are also included in Fig. 1.**

365
 366 Injecting a known amount of sample into the HPLC column allowed us to track all the measured mass by the four
 367 instruments sampling. As shown in Fig. 2, all of the injected mass was analyzed by the UV-Vis spectrometer, but
 368 only a small fraction of it was analyzed (0.55 %) by the online instruments. There was substantial fluid loss at the
 369 atomizer, which is thought to account for the bulk of the mass leaving the HPLC. The EESI and AMS measure the
 370 least mass, due to their low flow rates (0.28 L min⁻¹ and 0.1 L min⁻¹, respectively). Of the mass that exited the
 371 atomizer, ~20 % was lost in the tubing (~10 m, 1/4" ID) to the aerosol sampling manifold (represented as 0.3 % of
 372 total in Fig. 2). Overall, the efficiency in sampling the injected mass with the online instruments was very low with
 373 this system, primarily due to the atomization process. In SOA extracts that are highly concentrated, this is not a
 374 major problem. However, application of this method to lower concentration samples would benefit from use of a
 375 lower flow liquid chromatography method and a more efficient atomizer.
 376

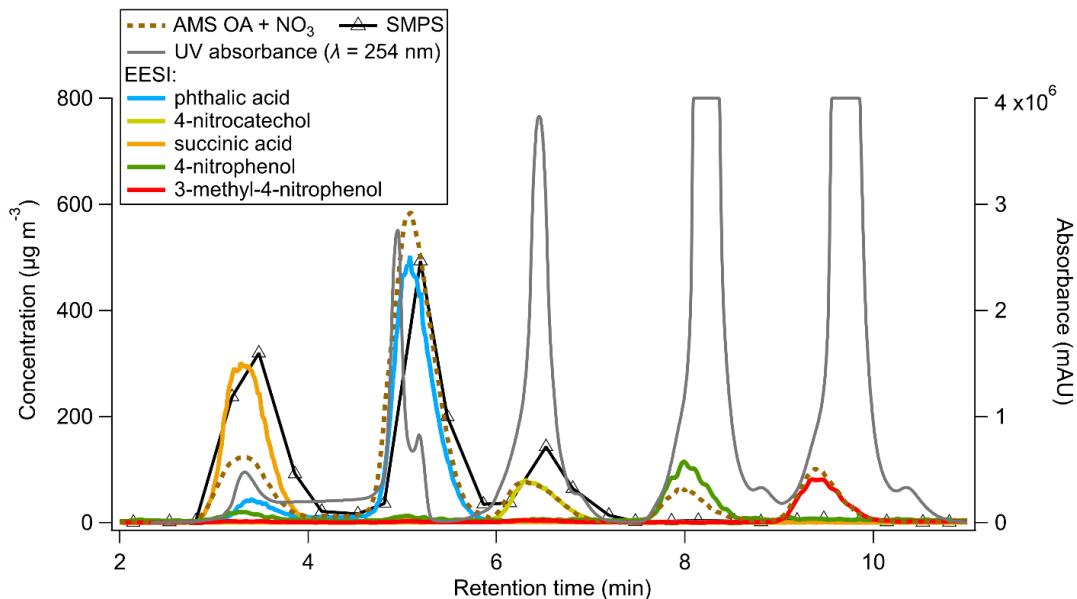
377 **3.2 Application of multi-instrumental method and PMF for standard species' calibrations**378 **3.2.1 Cross comparison between directly calibrated one component chromatographic standards vs. multi-
 379 instrumental method**

380 In order to test the efficacy of the proposed method, two solutions were made containing one standard each, either
 381 phthalic acid or 4-nitrocatechol. These species were first calibrated directly in order to obtain CF_x^E and CF_x^A , as

described in Sect. 2.5.4. Then, each solution was injected into the HPLC to generate isolated chromatograms (Fig. 3).

Figure 3. Single standard calibrations for (a) uncalibrated HPLC data for phthalic acid, (b) uncalibrated HPLC data for 4-nitrocatechol, (c) HPLC phthalic acid data calibrated using the sensitivity derived from the direct calibration, (d) HPLC 4-nitrocatechol data calibrated using the sensitivity derived from the direct calibration, (e) integrated Gaussian peaks from (c), and (f) integrated Gaussian peaks from (d).

In Fig. 3a, the uncalibrated background subtracted data is shown. Phthalic acid contains no nitrate moiety, so AMS NO₃ was 0. Fig. 3b shows the raw data for 4-nitrocatechol. Due to the nitro group, AMS NO₃ is added to AMS OA to obtain the total mass measured by the AMS. If the method was followed as described in Sect. 2.7, the raw data would be fit with Gaussian curves and integrated, in order to produce CF_x^E and CF_x^A for each species. However, in this test study, CF_x^E and CF_x^A are already known through direct calibrations discussed in Sect. 2.5.4.


Figure 3c shows the HPLC phthalic acid peak with the direct calibration factor applied.. It is clear that the AMS, EESI, and SMPS data line up well, indicating that the multi-instrumental approach produces very similar CF_x^E and CF_x^A as the direct calibrations. Fig. 3d echoes this, showing good overlap across each instrument for 4-nitrocatechol.

Figures 3e and 3f show the integrated, calibrated Gaussian curves. If the multi-instrumental method worked as well as direct calibrations, the maximum integrated values would be expected to be the same for each instrument. For phthalic acid, the instruments agree within 6 %, with the EESI showing the largest deviation from the other instruments. For 4-nitrocatechol, this difference is 20 %, and again the EESI is the farthest from the other instruments. Such discrepancies could be due to changes in EESI sensitivity, which may be driven by the different solvents used for calibration (water for direct calibrations, and a mixture of acetonitrile and water for the multi-

406 instrumental method). It could also be due to the high concentrations of each solute, which may change CF_x^E
407 slightly.

408 Following method validation through comparison between direct calibrations and the multi-instrumental
409 calibration method, a mixture containing five standards (phthalic acid, 4-nitrocatechol, succinic acid, 4-nitrophenol,
410 and 3-methyl-4-nitrophenol) was run through the HPLC column (Fig. 4). Like above, each species was first
411 calibrated directly, in order to compare the direct calibration values vs. the multi-instrumental calibration method for
412 a more complex chemical system.

413

414
415 **Figure 4. Time series of UV absorbance (milli-absorbance units) and AMS, EESI, and SMPS mass concentrations for a**
416 **mixed solution standard HPLC run.**

417

418 In Fig. 4, succinic acid was the first peak to elute from the HPLC column, from $\sim 2.5 - 4.0$ min. The EESI and
419 SMPS data match well, but the AMS data is lower by a factor of ~ 2 . This is potentially driven by the phthalic acid /
420 succinic acid co-elution (as evidenced by the EESI). The CF_x^A for both species is shown in Table 1. CF_x^A differ
421 substantially, and an internal mixture of aerosols containing succinic acid and phthalic acid may result in a larger
422 AMS bias (as $CF_{Succinic Acid}^A$ and $CF_{Phthalic Acid}^A$ differ significantly) than the EESI (where we measured molecular
423 ions) or the SMPS (as the density of phthalic acid and succinic acid are similar, table S2).

424

425

426 **Table 1. Calibration factors for resolved (or mostly resolved) standard species. CF_x^E values are reported in counts $s^{-1} \mu g^{-1}$**
 427 **m^3 and the relative EESI calibrations factors (CF_x^E / CF_{nitro}^E (EESI-) or CF_x^E / CF_{levo}^E (EESI+)), and the AMS calibration**
 428 **factors (CF_x^A) are unitless values.**

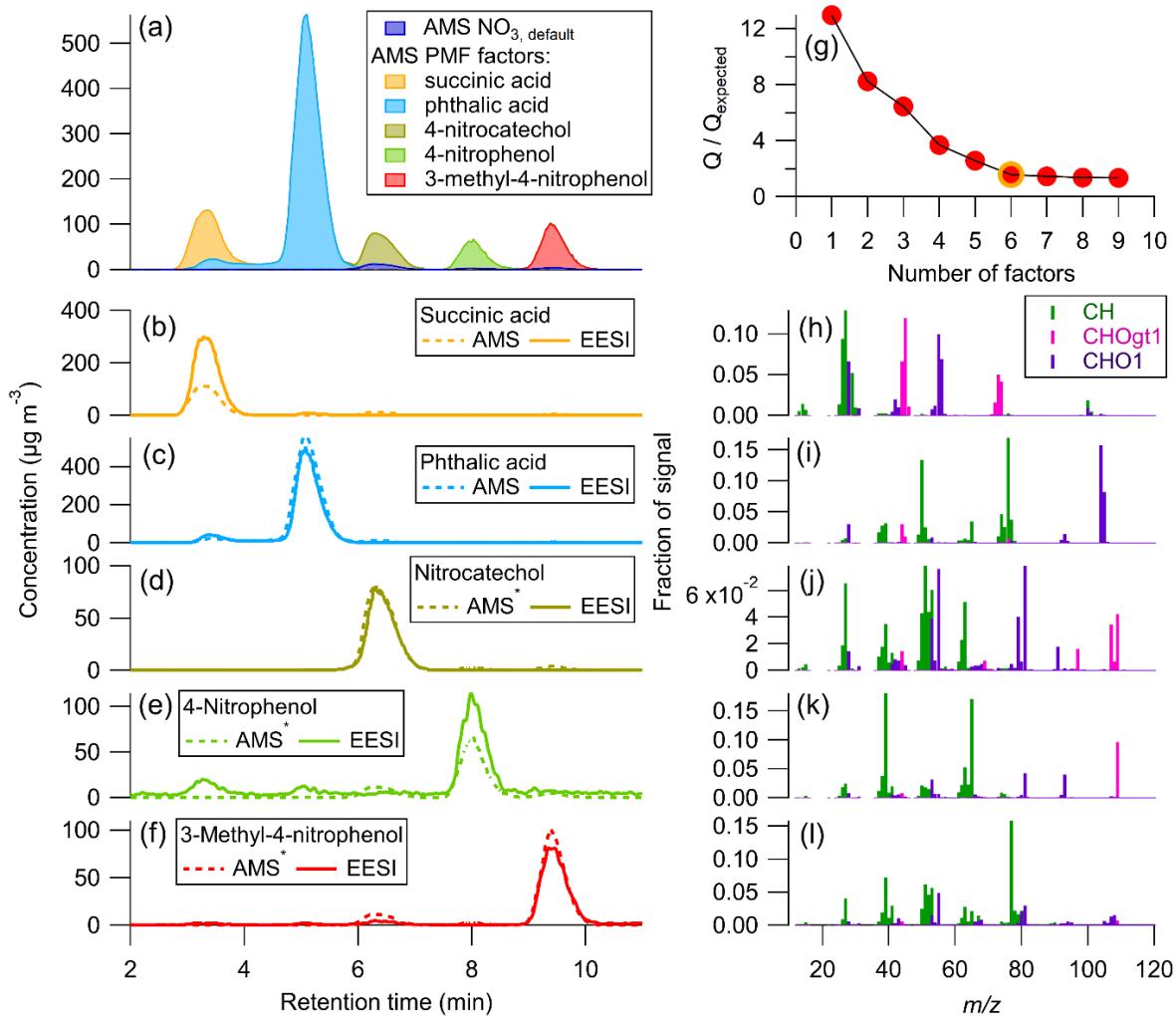
Species	Direct calibration CF_x^E (counts $s^{-1} \mu g^{-1} m^3$)	Multi- instr. calibration CF_x^E (counts $s^{-1} \mu g^{-1} m^3$)	Direct calibration CF_x^E / CF_{nitro}^E (EESI-) or CF_x^E / CF_{levo}^E (EESI+)	Multi- instr. calibration CF_x^E / CF_{nitro}^E (EESI-) or CF_x^E / CF_{levo}^E (EESI+)	Direct calibration CF_x^A (unitless)	Multi-instr. CF_x^A (unitless)
4-nitrocatechol (EESI-)	44 ± 5.0	23	1.0	1	2.0 ± 0.17	1.1
4-nitrocatechol (EESI+)	-	18	-	0.020	-	-
Succinic acid (EESI-)	30 ± 4.0	22	0.68	0.98	1.6 ± 0.10	0.52
Succinic acid (EESI+)	-	26	-	0.029	-	-
Phthalic acid (EESI-)	18 ± 2.8	18	0.41	0.82	0.79 ± 0.070	1.0
Phthalic acid (EESI+)	-	620	-	0.68	-	-
4-nitrophenol (EESI-)*	1.6 ± 0.57	26	0.036	1.2	0.59 ± 0.050	5.9
3-methyl-4-nitrophenol (EESI-)*	5.8 ± 4.0	42	0.14	1.9	0.90 ± 0.10	8.0
Levoglucosan (EESI+)	200 ± 10	900	1.0	1.0	0.45 ± 0.06	-

429 * The reported values here are highly uncertain due to differences in evaporation for each instrument

430

431 Phthalic acid elutes as two isomers, with the largest eluting between 4 and 6 min. All three instruments match well.

432 4-nitrocatechol was next, and showed very good agreement between the EESI and AMS, but a factor of ~ 2


433 difference between the SMPS and EESI / AMS. The exact cause for this discrepancy is unknown.

434 4-nitrophenol and 3-methyl-4-nitrophenol both match well between the EESI / AMS, but the SMPS
 435 concentration is a factor of 20 less than the other two instruments. The likely explanation is that 4-nitrophenol and 3-
 436 methyl-4-nitrophenol are volatile (table S2). Compared to succinic acid, > 90 % of these species evaporated from
 437 injection to detection by the EESI / AMS. The SMPS measurement is slower than the other instruments, and dilutes

438 the incoming aerosol by a factor of 4 inside the DMA column. The AMS and EESI measurements are faster and do
439 not dilute the incoming aerosol. Due to these differences, nearly all of the injected mass evaporated in the SMPS.
440 This suggests that volatile species (where $C^* \gg OA$) are not able to be calibrated for by this method. Evaporation
441 would also likely occur during direct calibrations, but to a lesser degree due to the higher pure species OA
442 concentrations.

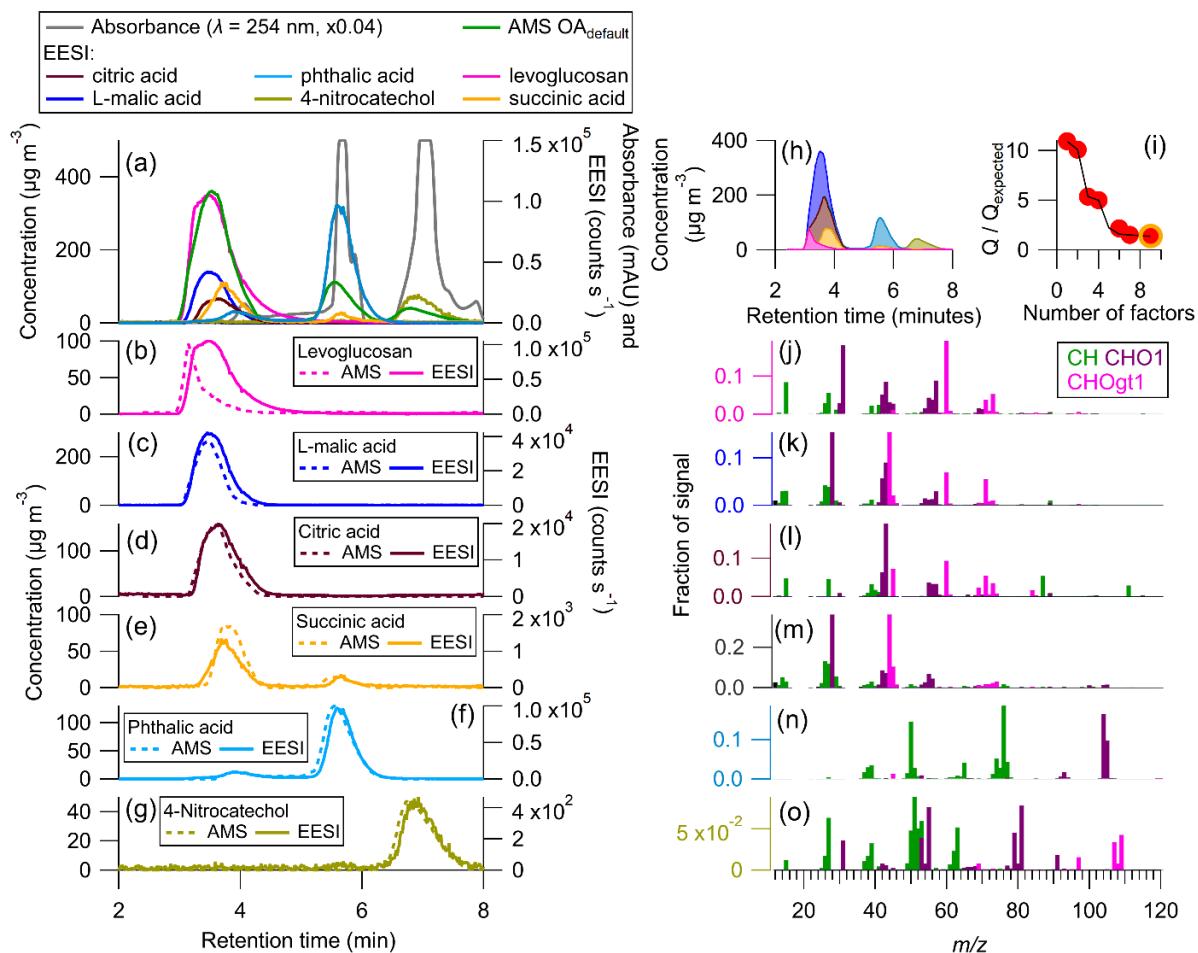
443 **3.2.2 Combined application of the multi-instrumental calibration method and PMF on two mixed standards**
444 **solutions**

445 PMF was combined with the multi-instrument calibration method to better separate the AMS data for succinic acid
446 and phthalic acid, which overlap in Fig. 4. The results of applying PMF to the AMS data is shown below in Fig. 5.
447

448
449
450
451
452
453

Figure 5. Time series for the AMS PMF solution, (a) stacked plot of each factor and AMS NO_3 , (b) - (f) PMF factor with CF_x^A applied to individual species, along with EESI concentrations. (g) Q / Q_{exp} vs. number of PMF factors, chosen solution circled in yellow. (h) - (l) mass spectra (colored by associated AMS HR family) for each AMS PMF factor. A 6 factor solution was chosen, with only 5 factors plotted here. The remaining factor was attributed to the background signal, and was $< 2 \mu\text{g m}^{-3}$ at all times.

* AMS signal shown is OA + NO_3 , default


454
455

456 Figure 5a – Fig. 5f show excellent separation by PMF between the time series for each of the standards present in
457 the mixture. This is likely due to the very different mass spectra for each species (Fig. 5h - Fig. 5l) as well as the
458 time separation achieved by the HPLC. The mass spectra for each standard was compared to the direct calibration
459 mass spectra to confirm the AMS PMF factors were assigned correctly (Fig. S6 and table S4). For all species, there
460 was excellent correspondence, and the uncentered correlation coefficient (UC) between the mass spectral peaks was
461 > 0.95 .

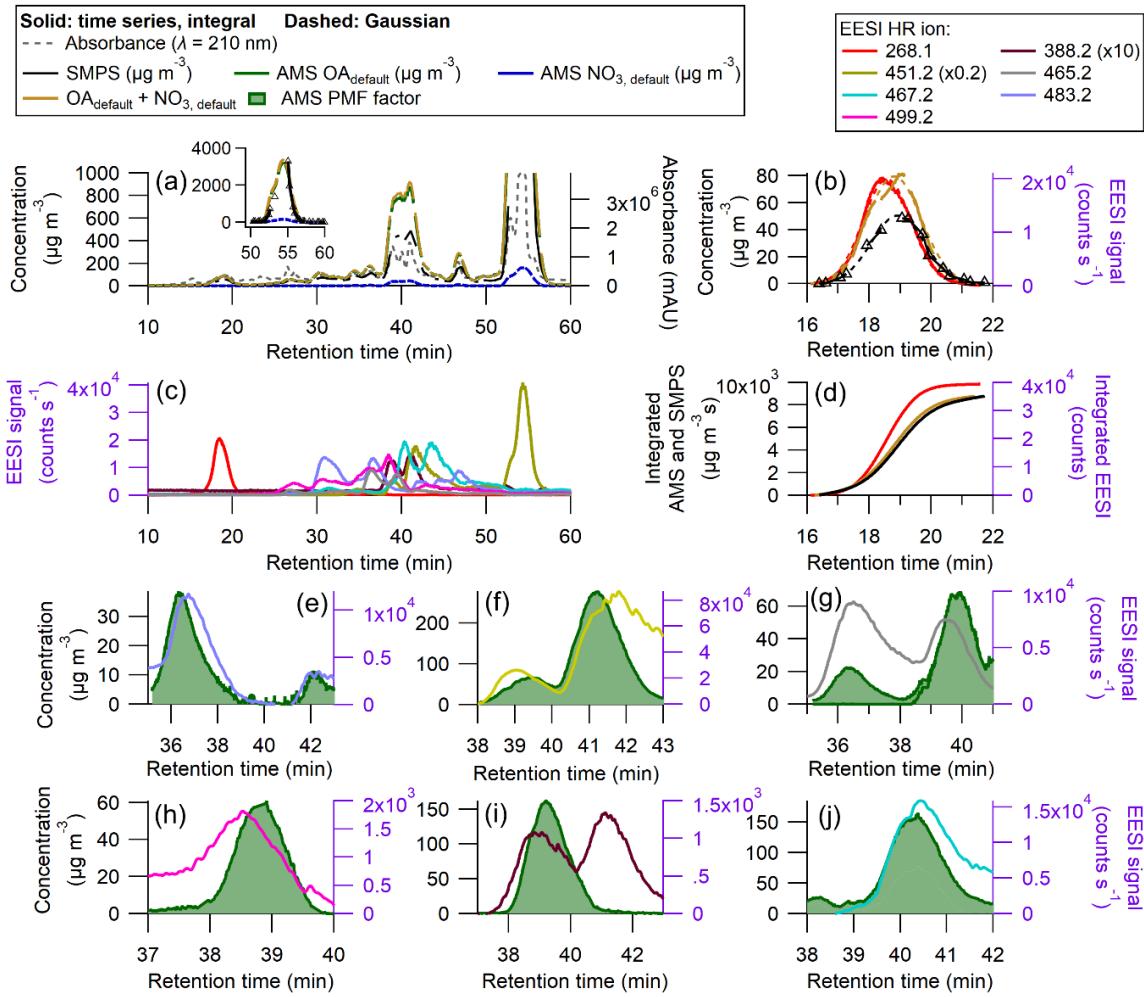
462 Here, the CF_x^A and CF_x^E values are known for each pure standard (from direct calibrations). When applying
463 the CF to individual species, the overall agreement between the AMS and EESI time series is comparable to that

464 shown in Fig. 4. The AMS still underestimates succinic acid by a factor of ~ 2 compared to the EESI, even after
465 better separation is achieved with PMF. As discussed previously, this could be due to the mixing of the two species,
466 which might change the viscosity or phase of the sampled aerosols compared to the pure species, which in turn
467 could fundamentally change the CF_x^A due to the change in CE. Whilst separation was achieved with PMF, PMF time
468 series are likely more accurate for systems where different species have similar CF_x^A (e.g. SOA mixtures from a
469 single precursor and oxidant).

470 The AMS chromatogram for the mixture studied in Fig. 4 and Fig. 5 was mostly well separated without
471 PMF. In order to assess the ability of PMF to separate AMS data for a more complex mixture, PMF was run on a
472 different standard solution shown in Fig. 6.

475 **Figure 6.** (a) time series of AMS total OA (assumed $CF_x^A = 1.4$), EESI HR ion, and absorbance (max = 4×10^6 , milli-
 476 absorbance units). (b) - (g) AMS PMF factor (assumed $CF_x^{A,\text{default}} = 1.4$) and EESI HR ion for 6 calibrants. (h) Stacked
 477 PMF factor solution time series, (g) Q / Q_{exp} for AMS PMF solution, a 9 factor solution was chosen (yellow circle) with
 478 $FPEAK = 0.2$, and (j) - (o) AMS family colored mass spectra for 6 PMF factors. For levoglucosan and succinic acid, 2
 479 factors were combined. The remaining factor was attributed to the background signal (< 2 µg m⁻³ at all times).

481 Unlike the data shown in Fig. 3 – Fig. 5, the species run in the standard solution shown in Fig. 6 were not calibrated
 482 directly. Thus, Fig. 6 serves as a test of PMFs ability to resolve AMS data for complex mixtures, rather than a
 483 comparison of the calibration methods. Figure 6a shows the uncalibrated time series / chromatogram for the
 484 standards in the mixture. In contrast to the previous mixture, this solution contains five co-eluting peaks:
 485 levoglucosan, L-malic acid, citric acid, succinic acid, and a small fraction of the phthalic acid and its isomer. These
 486 five co-eluting peaks suggest that the application of only HPLC with the separation method being used here is not
 487 sufficient for these species, likely due to how polar they are. Further separation could be achieved by either
 488 changing the HPLC method (through the use of a normal phase chromatography, which uses e.g. a silica column) or
 489 running PMF on the AMS data.


490 Figure 6b – Fig. 6h show AMS PMF time series for the standards present in the mixture. In Fig. 6b, both
491 the AMS and EESI levoglucosan peaks have different shapes. The EESI peak has a right tail, which is potentially
492 due to the “sticky” (semi-volatile) nature of levoglucosan (Brown et al., 2021). The AMS peak has a sharp increase
493 and slow descent, and does not resemble a Gaussian (which is the approximate shape we expect eluting peaks to
494 have). This is likely due to an imperfect PMF separation. Despite that, when comparing the mass spectra in Fig. 6j to
495 the direct calibration mass spectra in Fig. S7, UC (table S5) is 0.93, suggesting consistency between the two mass
496 spectra.

497 L-malic acid and citric acid also co-elute with levoglucosan. For citric acid, L-malic acid, and levoglucosan
498 the mass spectra shown in Fig. 6j – Fig. 6l are somewhat similar. For L-malic acid and levoglucosan, m/z 60 makes
499 up some of the observed signal. While m/z 60 is a known levoglucosan AMS ion, the direct calibration mass spectra
500 for L-malic acid also shows some signal at m/z 60. The PMF mass spectra for L-malic acid has a slightly higher ratio
501 of m/z 60 relative to the other ions, which could suggest that there is some mixing between the L-malic acid and
502 levoglucosan factors. The assigned L-malic acid factor has a UC of 0.89 with the directly calibrated mass spectra,
503 but citric acid was not directly calibrated for, and it is likely there is some overlap in the AMS factors between those
504 three species. This was an especially complex solution for PMF to resolve due to the very similar retention times
505 and mass spectra between these species.

506 As in Fig. 5, succinic acid, phthalic acid, and 4-nitrocatechol (Fig. 6e – Fig. 6g and Fig. 6m – Fig. 6o) are
507 easily resolved when running PMF on the AMS chromatograms. This is likely due to both the retention time
508 differences and the different AMS mass spectra for these three species. In Table 1, calibration factors are shown for
509 levoglucosan, succinic acid, phthalic acid, and 4-nitrocatechol. CF_x^A is known from the direct calibrations done in
510 Fig. 4. During this experiment, only levoglucosan was cross-calibrated with a direct calibration, however, the multi-
511 instrumental calibration value is highly affected by the shape of the AMS PMF factor associated with levoglucosan.
512 Thus, the multi-instrumental calibration factor for levoglucosan is likely incorrect. The PMF factor stacked time
513 series is shown in Fig. 6h. These results suggest that while PMF run on the AMS data does provide further peak
514 resolution compared to HPLC alone, PMF cannot completely resolve all co-eluting peaks.

515 **3.3 Combined application of the multi-instrumental calibration method and PMF on β -pinene + NO_3 SOA**

516 In order to test the applicability of the proposed method to a complex real system, SOA from β -pinene + NO_3 was
517 generated, collected on a filter, extracted, and analyzed with our multi-instrument system (per Sect. 2.1). This SOA
518 system has been studied in depth previously and 95 % of the SOA mass is composed of eight unique products,
519 shown in Table 1 in Claflin and Ziemann (2018) and Table S6 here (Claflin and Ziemann, 2018). Of the eight
520 known products, we identified molecular ions that are attributed to a monomer (m/z 268.1, assumed to be
521 $[\text{C}_{10}\text{H}_{15}\text{NO}_6\text{-Na}]^+$) and five dimers. Some of the dimers elute as different isomers, but the EESI HR ions observed
522 corresponded to m/z 451.2 ($[\text{C}_{20}\text{H}_{32}\text{N}_2\text{O}_8\text{-Na}]^+$), m/z 467.2 ($[\text{C}_{20}\text{H}_{32}\text{N}_2\text{O}_9\text{-Na}]^+$), m/z 483.2 ($[\text{C}_{20}\text{H}_{32}\text{N}_2\text{O}_{10}\text{-Na}]^+$), and
523 m/z 499.2 ($[\text{C}_{21}\text{H}_{36}\text{N}_2\text{O}_{10}\text{-Na}]^+$), all of which were identified in Claflin and Ziemann (2018). We also observed two
524 additional ions, m/z 388.2 and m/z 465.2, whose structures remain unknown. To better compare the differences in
525 the chromatogram obtained here vs that shown in Claflin and Ziemann (2018), we compare the UV-Vis time series

526 in Fig. S9. The chromatograms are similar, although their chromatogram had slightly better resolution. Differences
 527 in observed species could potentially arise due to the age of the SOA extract used here (~ 1 year) vs. the fresh SOA
 528 extract used in that study, fragmentation of species in the EESI (e.g. m/z 388.2), or other experimental factors. For
 529 simplicity, the SOA peaks observed will be referenced by their associated EESI HR io. **Figure 7. Results of an HPLC**
 530 **run for SOA from β -pinene + NO₃ (a) AMS, SMPS, and UV-Vis chromatograms (milli-absorbance units), with inset**
 531 **showing peak from 50 - 60 min. (b) Time series and Gaussian fits for the peak between 16 and 20 min (without using**
 532 **PMF), (c) EESI HR ions time series (d) time integrated mass concentrations (ion signal) for AMS OA and NO₃, SMPS**
 533 **total mass, and EESI+ HR ion (m/z 268.1). (e) - (j) show some AMS PMF factors against measured EESI+ HR ions. (g), (i),**
 534 **and (j) represent split AMS PMF factors for the measured EESI+ HR ions. The AMS PMF factors have a CF_x^A ranging**
 535 **from 1.46 - 1.97 as shown in Fig. S3 and Table 2. Densities are applied to the SMPS data, shown in Fig. S8.**

536

537 Figure 7a shows the full time series for the β -pinene system. Many of the peaks are not resolved enough to allow for
 538 the direct calculation of CF_x^A and CF_x^E using the SMPS as a the reference, as discussed in Sect. 2.7. The degree of
 539 peak co-elution is shown in Fig. 7c. There are two isolated peaks, m/z 268.1 from 15 - 21 min and m/z 451.2 from 52

540 - 58 min. The raw (and fitted) data is shown in Fig. 7b for the EESI ion measured at m/z 268.1. The integrated fits
541 are shown in Fig. 7d.

542 The EESI sensitivities for the overlapping peaks from ~ 30 to ~ 50 min were calculated by referencing the
543 observed EESI signal to the AMS PMF time series. In Fig. 7e – Fig. 7j, AMS PMF time series that increased during
544 the middle third of the run are shown alongside EESI HR ions. The full PMF solution can be found in Fig. S10 –
545 Fig. S12. AMS factors were matched with EESI HR ions based on the retention time and general shape of the time
546 series. For some peaks, the retention times differ by up to 0.5 min. The complexity of this solution, as well as the
547 similarities in the products' molecular structures, likely hindered the ability of PMF to fully resolve each individual
548 product. For many of the overlapping peaks, the magnitude of the individual AMS PMF factors are comparable.

549 CF_x^E and CF_x^A are given for each identified species in Table 2. Many of the identified species have CF_x^E in
550 the same range as levoglucosan, within a factor of 3.

551

552 **Table 2.** EESI HR ion, CF_x^E (counts $s^{-1} \mu g^{-1} m^3$), CF_x^E / CF_{levo}^E , and, CF_x^A . $CF_{levo}^E = 441.6$ counts $s^{-1} \mu g^{-1} m^3$. CF_x^E was
553 calculated using the AMS PMF [OA] $\times 1.05$ (the average $[NO_3]$ contribution was ~ 5 %, Fig. S3).

EESI ion	CF_x^E (counts $s^{-1} \mu g^{-1} m^3$)	CF_x^E / CF_{levo}^E (unitless)	CF_x^A (unitless)
268.1	270	0.61	1.46
388.2	10.9	0.023	1.97
451.2 (1)	407	0.92	1.97
451.2 (2)	423	0.96	1.73
451.2 (3)	83.2	0.19	1.97*
465.2 (1)	670	1.5	1.97
465.2 (2)	170	0.38	1.97
467.2	139	0.31	1.73
483.2	435	0.99	1.97
499.2	54.2	0.12	1.97

554 * Incomplete SMPS data, assuming $CF_x^A = 1.97$.

555

556 Some species, like the EESI HR ions measured at m/z 388.2 and m/z 499.2, have much lower EESI sensitivity than
557 the other species. These species could be fragments of a larger parent ion, or they could be species that, for whatever
558 reason, do not form a strong adduct with Na^+ . The ambiguity in the PMF factors may result in some errors in CF_x^E ,
559 but they are unlikely to fully explain the factor of 10 difference in sensitivity between the most and least sensitive β -
560 pinene + NO_3 products. In future runs with slightly better chromatographic separation a multivariate fit of individual
561 factors vs. the SMPS may allow further constraining the quantification.

562 In this system, many of the products differ only by one or two oxygen atoms. In some cases, a carboxylic
563 acid functional group replaces a ketone, whilst other molecules contain a cyclic ether, and some do not. The subtle
564 differences in structure could influence the sensitivity with the EESI, as the oxygenated moieties may change the
565 likelihood of forming a strong $[M+Na]^+$ adduct. Further, some EESI HR ions eluted multiple times (e.g. m/z 451.2).
566 Claflin and Ziemann (2018) identified the structure of this ion for the third peak (shown in Table S6). However, this
567 ion is measured twice more, from 38 - 43 min, which suggests the presence of isomers. Isomers can have different
568 structures (shown in Table S6) and different CF_x^E . One example is m/z 483.2, where one isomer has a $CF_x^E = 327.2$
569 and a second isomer has a $CF_x^E = 54.2$ counts $s^{-1} \mu\text{g}^{-1} \text{m}^3$.

570 Despite differences in CF_x^E , CF_x^A was more consistent. In table 2, the AMS response to different SOA
571 species formed from a single VOC precursor varies only by 25 %. For the mixed peaks = CF_x^A was either 1.97 or
572 1.73, as discussed in Sect. S3 and shown in Fig. S3. For one of the isolated peaks, m/z 451.2, the actual CF_x^A was not
573 calculated, due to a malfunction of the SMPS system between 54 - 56 min. Individual peaks' Gaussian fits and
574 integrated curves are shown in Fig. S13.

575 **3.4 Discussion on the application of this method**

576 In this paper, a novel technique was introduced that allows for the calibration of real-time mass spectrometers for
577 individual species that cannot be obtained directly. This paper addresses the feasibility, performance, and limitations
578 of this technique, all of which are necessary for any future use of this method.

579 The original purpose of this method was to calibrate species in SOA formed from laboratory chamber
580 experiments. In many cases, the identity of the species was unknown, or the species could not be purchased as a pure
581 standard. During those chamber experiments, SOA composition was measured in real-time with AMS, EESI, and
582 SMPSs. SOA was also pulled through a Teflon filter, extracted in solvent, injected into the HPLC.

583 One application of this method would allow calculating yields for different SOA species produced from the
584 oxidation of individual VOCs. This would allow for a better understanding of the chemical and partitioning
585 mechanisms controlling the SOA composition and formation, along with providing information on which species are
586 contributing the most to environmental and human health issues caused by SOA (e.g. higher light absorption or
587 increased toxicity).

588 Another application is inferring calibration factors for important species in field datasets. This could be
589 done by collecting filters to use with this method, including using UPLC for higher resolution. Alternatively, if
590 specific primary sources or SOA precursors are known to be important for a dataset, those can be sampled in the lab
591 to determine key species and their calibration factors.

592 One example of a field application is the FIREX-AQ field campaign, where the Jimenez lab at the Univ. of
593 Colorado Boulder operated an EESI (Pagonis et al., 2021). During that campaign, direct calibrations were performed
594 daily using either 4-nitrocatechol or levoglucosan. In the laboratory, these calibrations were also carried out daily,
595 before chamber experiments and before running the HPLC calibration method. If species specific sensitivities are
596 obtained in the lab, then they can be ratioed to either 4-nitrocatechol or levoglucosan, providing the relative

597 sensitivity of individual analytes. The relative sensitivity can be referenced to the sensitivities obtained in the field,
598 allowing for the budgeting of ambient SOA for multiple species.

599 **4 Conclusions**

600 In this study, we introduced a novel multi-instrumental calibration method for EESI and AMS that uses HPLC and
601 PMF to separate complex standard mixtures and SOA into individual species or sub groups of species present in the
602 mixture. Our proof of concept test using individual pure standards demonstrated close agreement (within 20 %)
603 between direct and multi-instrumental calibration factors, indicating this method's quantitative ability. In a second
604 proof of concept using a mostly resolved standard mixture, EESI direct and multi-instrumental calibration factors
605 agree within a factor of two for low volatility species. We note that this method is not suitable for semivolatile
606 species whose C^* is similar or higher than the concentration of aerosol sampled inside the SMPS DMA column.
607 These results suggest that this method can be used to reliably determine species sensitivities for completely and
608 mostly resolved chromatograms.

609 When HPLC alone failed to fully resolve individual analytes, PMF on AMS data successfully resolved individual
610 analytes time series in a simple standard mixture. However, in more complex standard and SOA mixtures, while
611 PMF provided some additional chromatographic separation, the PMF solution showed signs of factor mixing. This
612 was especially evident in the β -pinene + NO_3 SOA mixture, which contained many similar analytes, resulting in a
613 less well resolved PMF solution. While approximate EESI and AMS calibration factors were obtained, these
614 sensitivities are affected by the inherent error in the PMF solution. In practice, while some mixtures may be
615 adequately resolved by HPLC alone, AMS PMF can improve the chemical resolution of complex systems.

616 Future studies should prioritize improving the chromatography for the system of interest, potentially
617 through changing the column type and / or mobile phase gradients, or using systems with higher intrinsic resolution
618 such as UPLC (Kenseth et al., 2023). During the experiments shown in this manuscript we were limited to a C_{18}
619 column, which is primarily suited for separating less polar species. However, in the polar standard mixtures shown
620 here and in scenarios involving significant oxidation and smaller precursor gases, the resulting products are likely
621 too polar to be adequately separated by a C_{18} column. In those experiments, a column with a polar stationary phase
622 would allow for the separation of SOA components.

623 In conclusion, our method offers a valuable tool for quantifying EESI and AMS sensitivities in mixtures,
624 especially pertinent for laboratory generated SOA lacking pure standards or characterized by unknown isomeric
625 forms. This technique can also be applied to other real-time aerosol mass spectrometers. To our knowledge, this
626 technique stands as one of very few available methods for rapid calibration of EESI and AMS for SOA species that
627 are unavailable as pure standards, emphasizing its significance in atmospheric research.

628 **5 Acknowledgements**

629 We thank Harald Stark for data analysis support for Igor and Tofware. This work was supported by NASA grants
630 80NSSC18K0630, 80NSSC23K0828, and 80NSSC21K1451, a NASA Future Investigators in Earth and Space

631 Science and Technology graduate student research grant (FINESST, 80NSSC20K1642), NSF AGS-2206655, and a
632 CIRES graduate research fellowship.

633 **6 Author Contributions**

634 MKS, DAD, JLJ, and PJZ designed the experiments, MKS carried them out with support from DAD, DK, SY, and
635 PCJ. ACZ, PJZ, and MPD provided the HPLC instrument support. MKS carried out all data analysis and preparation
636 of the manuscript, with contributions from all coauthors.

637 **7 Competing Interests**

638 The authors declare that they have no conflict of interest.

639 **References**

640 Bakker-Arkema, J. G. and Ziemann, P. J.: Minimizing Errors in Measured Yields of Particle-
641 Phase Products Formed in Environmental Chamber Reactions: Revisiting the Yields of β -
642 Hydroxynitrates Formed from 1-Alkene + OH/NO_x Reactions, *ACS Earth Space Chem.*, 5(3),
643 690–702, doi:10.1021/acsearthspacechem.1c00008, 2021.

644 Brown, W. L., Day, D. A., Stark, H., Pagonis, D., Krechmer, J. E., Liu, X., Price, D. J., Katz, E.
645 F., DeCarlo, P. F., Masoud, C. G., Wang, D. S., Hildebrandt Ruiz, L., Arata, C., Lunderberg, D.
646 M., Goldstein, A. H., Farmer, D. K., Vance, M. E. and Jimenez, J. L.: Real-time organic aerosol
647 chemical speciation in the indoor environment using extractive electrospray ionization mass
648 spectrometry, *Indoor Air*, 31(1), 141–155, doi:10.1111/ina.12721, 2021.

649 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch,
650 T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M.,
651 Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P. and Worsnop, D. R.: Chemical and
652 microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer,
653 *Mass Spectrom. Rev.*, 26(2), 185–222, doi:10.1002/mas.20115, 2007.

654 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P.,
655 Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M.,
656 Jayne, J. T. and Worsnop, D. R.: Elemental ratio measurements of organic compounds using
657 aerosol mass spectrometry: characterization, improved calibration, and implications, *Atmos.*
658 *Chem. Phys.*, 15(1), 253–272, doi:10.5194/acp-15-253-2015, 2015.

659 Chen, H., Venter, A. and Graham Cooks, R.: Extractive electrospray ionization for direct
660 analysis of undiluted urine, milk and other complex mixtures without sample preparation, *Chem.*
661 *Commun.*, (19), 2042–2044, doi:10.1039/B602614A, 2006.

662 Claflin, M. S. and Ziemann, P. J.: Identification and Quantitation of Aerosol Products of the
663 Reaction of β -Pinene with NO₃ Radicals and Implications for Gas- and Particle-Phase Reaction
664 Mechanisms, *J. Phys. Chem. A*, 122(14), 3640–3652, doi:10.1021/acs.jpca.8b00692, 2018.

665 Craven, J. S., Yee, L. D., Ng, N. L., Canagaratna, M. R., Loza, C. L., Schilling, K. A., Yatavelli,
666 R. L. N., Thornton, J. A., Ziemann, P. J., Flagan, R. C. and Seinfeld, J. H.: Analysis of secondary
667 organic aerosol formation and aging using positive matrix factorization of high-resolution
668 aerosol mass spectra: application to the dodecane low-NO_x system, *Atmos. Chem. Phys.*, 12(24),
669 11795–11817, doi:10.5194/acp-12-11795-2012, 2012.

670 Day, D. A., Fry, J. L., Kang, H. G., Krechmer, J. E., Ayres, B. R., Keehan, N. I., Thompson, S.
671 L., Hu, W., Campuzano-Jost, P., Schroder, J. C., Stark, H., DeVault, M. P., Ziemann, P. J.,
672 Zarzana, K. J., Wild, R. J., Dubè, W. P., Brown, S. S. and Jimenez, J. L.: Secondary Organic
673 Aerosol Mass Yields from NO₃ Oxidation of α -Pinene and Δ -Carene: Effect of RO₂ Radical
674 Fate, *J. Phys. Chem. A*, 126(40), 7309–7330, doi:10.1021/acs.jpca.2c04419, 2022.

675 DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P. and Jimenez, J. L.: Particle
676 Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter
677 Measurements. Part 1: Theory, *Aerosol Sci. Technol.*, 38(12), 1185–1205,
678 doi:10.1080/027868290903907, 2004.

679 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin,
680 M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R. and Jimenez, J. L.: Field-
681 deployable, high-resolution, time-of-flight aerosol mass spectrometer, *Anal. Chem.*, 78(24),
682 8281–8289, doi:10.1021/ac061249n, 2006.

683 DeVault, M. P., Ziola, A. C. and Ziemann, P. J.: Products and Mechanisms of Secondary
684 Organic Aerosol Formation from the NO₃ Radical-Initiated Oxidation of Cyclic and Acyclic
685 Monoterpene, *ACS Earth Space Chem.*, 6(8), 2076–2092,
686 doi:10.1021/acsearthspacechem.2c00130, 2022.

687 Docherty, K. S., Jaoui, M., Corse, E., Jimenez, J. L., Offenberg, J. H., Lewandowski, M. and
688 Kleindienst, T. E.: Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-
689 Generated Secondary Organic Aerosols, *Aerosol Sci. Technol.*, 47(3), 294–309,
690 doi:10.1080/02786826.2012.752572, 2013.

691 Dockery, D. W., Cunningham, J., Damokosh, A. I., Neas, L. M., Spengler, J. D., Koutrakis, P.,
692 Ware, J. H., Raizenne, M. and Speizer, F. E.: Health effects of acid aerosols on North American
693 children: respiratory symptoms, *Environ. Health Perspect.*, 104(5), 500–505,
694 doi:10.1289/ehp.96104500, 1996.

695 Dzepina, K., Arey, J., Marr, L. C., Worsnop, D. R., Salcedo, D., Zhang, Q., Onasch, T. B.,
696 Molina, L. T., Molina, M. J. and Jimenez, J. L.: Detection of particle-phase polycyclic aromatic
697 hydrocarbons in Mexico City using an aerosol mass spectrometer, *Int. J. Mass Spectrom.*, 263(2–
698 3), 152–170, doi:10.1016/j.ijms.2007.01.010, 2007.

699 Eichler, P., Müller, M., D'Anna, B. and Wisthaler, A.: A novel inlet system for online chemical
700 analysis of semi-volatile submicron particulate matter, *Atmos. Meas. Tech.*, 8(3), 1353–1360,
701 doi:10.5194/amt-8-1353-2015, 2015.

702 Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J. and
703 Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates
704 and implications for atmospheric chemistry, *Proc. Natl. Acad. Sci. U. S. A.*, 107(15), 6670–6675,
705 doi:10.1073/pnas.0912340107, 2010.

706 Gallimore, P. J. and Kalberer, M.: Characterizing an Extractive Electrospray Ionization (EESI)
707 Source for the Online Mass Spectrometry Analysis of Organic Aerosols, *Environ. Sci. Technol.*,
708 47(13), 7324–7331, doi:10.1021/es305199h, 2013.

709 Gao, Y., Walker, M. J., Barrett, J. A., Hosseinaei, O., Harper, D. P., Ford, P. C., Williams, B. J.
710 and Foston, M. B.: Analysis of gas chromatography/mass spectrometry data for catalytic lignin
711 depolymerization using positive matrix factorization, *Green Chem.*, 20(18), 4366–4377,
712 doi:10.1039/C8GC01474D, 2018.

713 Guo, H., Campuzano-Jost, P., Nault, B. A., Day, D. A., Schroder, J. C., Kim, D., Dibb, J. E.,
714 Dollner, M., Weinzierl, B. and Jimenez, J. L.: The importance of size ranges in aerosol
715 instrument intercomparisons: a case study for the Atmospheric Tomography Mission, *Atmos.*
716 *Meas. Tech.*, 14(5), 3631–3655, doi:10.5194/amt-14-3631-2021, 2021.

717 IPCC: IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working
718 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
719 edited by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, V. Bex, and P. M.
720 Midgley, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.,
721 2013.

722 Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E. and Worsnop, D.
723 R.: Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of
724 Submicron Particles, *Aerosol Sci. Technol.*, 33(1–2), 49–70, doi:10.1080/027868200410840,
725 2000.

726 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
727 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
728 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,
729 C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M.,
730 Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A.,
731 Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F.,
732 Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
733 Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J.
734 R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,
735 Middlebrook, A. M., Kolb, C. E., Baltensperger, U. and Worsnop, D. R.: Evolution of organic
736 aerosols in the atmosphere, *Science*, 326(5959), 1525–1529, doi:10.1126/science.1180353, 2009.

737 Jimenez, J. L., Canagaratna, M. R., Drewnick, F., Allan, J. D., Alfarra, M. R., Middlebrook, A.
738 M., Slowik, J. G., Zhang, Q., Coe, H., Jayne, J. T. and Worsnop, D. R.: Comment on “The
739 effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption
740 aerosol mass spectrometer,” *Aerosol Sci. Technol.*, 50(9), i–xv,
741 doi:10.1080/02786826.2016.1205728, 2016.

742 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van
743 Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y.,
744 Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati,
745 E., Stephanou, E. G. and Wilson, J.: Organic aerosol and global climate modelling: a review,
746 *Atmos. Chem. Phys.*, 5(4), 1053–1123, doi:10.5194/acp-5-1053-2005, 2005.

747 Kenseth, C. M., Hafeman, N. J., Rezgui, S. P., Chen, J., Huang, Y., Dalleska, N. F., Kjaergaard,
748 H. G., Stoltz, B. M., Seinfeld, J. H. and Wennberg, P. O.: Particle-phase accretion forms dimer
749 esters in pinene secondary organic aerosol, *Science*, 382(6672), 787–792,
750 doi:10.1126/science.adl0857, 2023.

751 Kimmel, J. R., Farmer, D. K., Cubison, M. J., Sueper, D., Tanner, C., Nemitz, E., Worsnop, D.
752 R., Gonin, M. and Jimenez, J. L.: Real-time aerosol mass spectrometry with millisecond
753 resolution, *Int. J. Mass Spectrom.*, 303(1), 15–26, doi:10.1016/j.ijms.2010.12.004, 2011.

754 Kruve, A., Kaupmees, K., Liigand, J. and Leito, I.: Negative electrospray ionization via
755 deprotonation: predicting the ionization efficiency, *Anal. Chem.*, 86(10), 4822–4830,
756 doi:10.1021/ac404066v, 2014.

757 Kumar, V., Giannoukos, S., Haslett, S. L., Tong, Y., Singh, A., Bertrand, A., Lee, C. P., Wang,
758 D. S., Bhattu, D., Stefenelli, G., Dave, J. S., Puthussery, J. V., Qi, L., Vats, P., Rai, P., Casotto,
759 R., Satish, R., Mishra, S., Pospisilova, V., Mohr, C., Bell, D. M., Ganguly, D., Verma, V.,
760 Rastogi, N., Baltensperger, U., Tripathi, S. N., Prévôt, A. S. H. and Slowik, J. G.: Highly time-
761 resolved chemical speciation and source apportionment of organic aerosol components in Delhi,
762 India, using extractive electrospray ionization mass spectrometry, *Atmos. Chem. Phys.*, 22(11),
763 7739–7761, doi:10.5194/acp-22-7739-2022, 2022.

764 Kuwata, M., Zorn, S. R. and Martin, S. T.: Using elemental ratios to predict the density of
765 organic material composed of carbon, hydrogen, and oxygen, *Environ. Sci. Technol.*, 46(2), 787–
766 794, doi:10.1021/es202525q, 2012.

767 Lanz, V. A., Alfara, M. R., Baltensperger, U., Buchmann, B., Hueglin, C. and Prévôt, A. S. H.:
768 Source apportionment of submicron organic aerosols at an urban site by factor analytical
769 modelling of aerosol mass spectra, *Atmos. Chem. Phys.*, 7(6), 1503–1522, doi:10.5194/acp-7-
770 1503-2007, 2007.

771 Law, W. S., Wang, R., Hu, B., Berchtold, C., Meier, L., Chen, H. and Zenobi, R.: On the
772 mechanism of extractive electrospray ionization, *Anal. Chem.*, 82(11), 4494–4500,
773 doi:10.1021/ac100390t, 2010.

774 Lee, E., Chan, C. K. and Paatero, P.: Application of positive matrix factorization in source
775 apportionment of particulate pollutants in Hong Kong, *Atmos. Environ.*, 33(19), 3201–3212,
776 doi:10.1016/S1352-2310(99)00113-2, 1999.

777 Lighty, J. S., Veranth, J. M. and Sarofim, A. F.: Combustion aerosols: factors governing their
778 size and composition and implications to human health, *J. Air Waste Manag. Assoc.*, 50(9),
779 1565–618; discussion 1619-22 [online] Available from:
780 <https://www.ncbi.nlm.nih.gov/pubmed/11055157>, 2000.

781 Liigand, J., Wang, T., Kellogg, J., Smedsgaard, J., Cech, N. and Kruve, A.: Quantification for
782 non-targeted LC/MS screening without standard substances, *Sci. Rep.*, 10(1), 5808,
783 doi:10.1038/s41598-020-62573-z, 2020.

784 Liu, X., Day, D. A., Krechmer, J. E., Brown, W., Peng, Z., Ziemann, P. J. and Jimenez, J. L.:
785 Direct measurements of semi-volatile organic compound dynamics show near-unity mass
786 accommodation coefficients for diverse aerosols, *Communications Chemistry*, 2(1), 1–9,
787 doi:10.1038/s42004-019-0200-x, 2019.

788 Lohmann, U., Broekhuizen, K., Leaitch, R., Shantz, N. and Abbatt, J.: How efficient is cloud
789 droplet formation of organic aerosols?, *Geophys. Res. Lett.*, 31(5), 2004.

790 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz,
791 A., Hallquist, M., Worsnop, D. and Thornton, J. A.: A novel method for online analysis of gas
792 and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols
793 (FIGAERO), *Atmos. Meas. Tech.*, 7(4), 983–1001, doi:10.5194/amt-7-983-2014, 2014.

794 Lopez-Hilfiker, F. D., Pospisilova, V., Huang, W., Kalberer, M., Mohr, C., Stefenelli, G.,
795 Thornton, J. A., Baltensperger, U., Prevot, A. S. H. and Slowik, J. G.: An extractive electrospray
796 ionization time-of-flight mass spectrometer for online measurement of atmospheric particles,
797 *Atmos. Meas. Tech.*, 12(9), 4867–4886, doi:10.5194/amt-12-4867-2019, 2019.

798 Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J.,
799 Blake, D. R., Brune, W. H., Choi, Y., Corr, C. A., Gouw, J. A. de, Dibb, J., DiGangi, J. P.,
800 Diskin, G. S., Fried, A., Huey, L. G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T.,
801 Pusede, S. E., Scheuer, E., Thornhill, K. L., Woo, J.-H. and Jimenez, J. L.: Secondary organic
802 aerosol production from local emissions dominates the organic aerosol budget over Seoul, South
803 Korea, during KORUS-AQ, *Atmos. Chem. Phys.*, 18(24), 17769–17800, doi:10.5194/acp-18-
804 17769-2018, 2018.

805 Nault, B. A., Croteau, P., Jayne, J., Williams, A., Williams, L., Worsnop, D., Katz, E. F.,
806 DeCarlo, P. F. and Canagaratna, M.: Laboratory evaluation of organic aerosol relative ionization
807 efficiencies in the aerodyne aerosol mass spectrometer and aerosol chemical speciation monitor,
808 *Aerosol Sci. Technol.*, 1–17, doi:10.1080/02786826.2023.2223249, 2023.

809 Paatero, P.: Least squares formulation of robust non-negative factor analysis, *Chemometrics*
810 *Intellig. Lab. Syst.*, 37(1), 23–35, doi:10.1016/S0169-7439(96)00044-5, 1997.

811 Paatero, P.: The Multilinear Engine: A Table-Driven, Least Squares Program for Solving
812 Multilinear Problems, including the n-Way Parallel Factor Analysis Model, *J. Comput. Graph.*
813 *Stat.*, 8(4), 854–854, doi:10.2307/1390831, 1999.

814 Paatero, P.: End user's guide to multilinear engine applications, University of Helsinki, Helsinki,
815 Finland., 2007.

816 Paatero, P. and Tapper, U.: Positive Matrix Factorization - A Nonnegative Factor Model With
817 Optimal Utilization of Error-Estimates of Data Values, *Environmetrics*, 5(2), 111–126, 1994.

818 Pagonis, D., Campuzano-Jost, P., Guo, H., Day, D. A., Schueneman, M. K., Brown, W. L.,
819 Nault, B. A., Stark, H., Siemens, K., Laskin, A., Piel, F., Tomsche, L., Wisthaler, A., Coggan,
820 M. M., Gkatzelis, G. I., Halliday, H. S., Krechmer, J. E., Moore, R. H., Thomson, D. S.,
821 Warneke, C., Wiggins, E. B. and Jimenez, J. L.: Airborne extractive electrospray mass
822 spectrometry measurements of the chemical composition of organic aerosol, *Atmospheric*
823 *Measurement Techniques*, 14(2), 1545–1559, doi:10.5194/amt-14-1545-2021, 2021.

824 Pospisilova, V., Lopez-Hilfiker, F. D., Bell, D. M., El Haddad, I., Mohr, C., Huang, W.,
825 Heikkinen, L., Xiao, M., Dommen, J., Prevot, A. S. H., Baltensperger, U. and Slowik, J. G.: On
826 the fate of oxygenated organic molecules in atmospheric aerosol particles, *Science Advances*,
827 6(11), eaax8922, doi:10.1126/sciadv.aax8922, 2020.

828 Qi, L., Chen, M., Stefenelli, G., Pospisilova, V., Tong, Y., Bertrand, A., Hueglin, C., Ge, X.,
829 Baltensperger, U., Prévôt, A. S. H. and Slowik, J. G.: Organic aerosol source apportionment in
830 Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-
831 MS) – Part 2: Biomass burning influences in winter, *Atmos. Chem. Phys.*, 19(12), 8037–8062,
832 doi:10.5194/acp-19-8037-2019, 2019.

833 Qi, L., Vogel, A. L., Esmaeilirad, S., Cao, L., Zheng, J., Jaffrezo, J.-L., Fermo, P., Kasper-Giebl,
834 A., Daellenbach, K. R., Chen, M., Ge, X., Baltensperger, U., Prévôt, A. S. H. and Slowik, J. G.:
835 A 1-year characterization of organic aerosol composition and sources using an extractive
836 electrospray ionization time-of-flight mass spectrometer (EESI-TOF), *Atmospheric Chemistry*
837 and *Physics*, 20(13), 7875–7893, doi:10.5194/acp-20-7875-2020, 2020.

838 Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., Worsnop,
839 D. R., Rudich, Y., DeCarlo, P. F. and Jimenez, J. L.: Particle Morphology and Density
840 Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2:
841 Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio,
842 *Aerosol Sci. Technol.*, 38(12), 1206–1222, doi:10.1080/027868290903916, 2004.

843 Stefenelli, G., Pospisilova, V., Lopez-Hilfiker, F. D., Daellenbach, K. R., Hüglin, C., Tong, Y.,
844 Baltensperger, U., Prévôt, A. S. H. and Slowik, J. G.: Organic aerosol source apportionment in
845 Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-
846 MS)--Part 1: Biogenic influences and day--night chemistry in summer, *Atmos. Chem. Phys.*,
847 19(23), 14825–14848 [online] Available from:
848 <https://acp.copernicus.org/articles/19/14825/2019/>, 2019.

849 Sueper, D.: ToF-AMS Data Analysis Software Webpage, [online] Available from:
850 http://cires1.colorado.edu/jimenez-group/wiki/index.php/ToF-AMS_Analysis_Software
851 (Accessed 13 April 2023), 2023.

852 Tennison, S. R.: Phenolic-resin-derived activated carbons, *Appl. Catal. A*, 173(2), 289–311,
853 doi:10.1016/S0926-860X(98)00186-0, 1998.

854 Tong, Y., Qi, L., Stefenelli, G., Wang, D. S., Canonaco, F., Baltensperger, U., Prévôt, A. S. H.
855 and Slowik, J. G.: Quantification of primary and secondary organic aerosol sources by combined
856 factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements
857 (EESI-TOF and AMS), *Atmospheric Measurement Techniques*, 15(24), 7265–7291,
858 doi:10.5194/amt-15-7265-2022, 2022.

859 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R. and Jimenez, J. L.: Interpretation
860 of organic components from positive matrix factorization of aerosol mass spectrometric data,
861 *Atmospheric Chemistry & Physics*, 9(9) [online] Available from: <https://d-nb.info/114970523X/34>, 2009.

863 Ulbrich, I. M., Handschy, A. V., Lechner, M. and Jimenez, J. L.: High-Resolution AMS Spectral
864 Database, [online] Available from: <http://cires.colorado.edu/jimenez-group/HRAMSsd/>, 2019.

865 Wang, D. S., Lee, C. P., Krechmer, J. E., Majluf, F., Tong, Y., Canagaratna, M. R., Schmale, J.,
866 Prévôt, A. S. H., Baltensperger, U., Dommen, J., El Haddad, I., Slowik, J. G. and Bell, D. M.:
867 Constraining the response factors of an extractive electrospray ionization mass spectrometer for
868 near-molecular aerosol speciation, *Atmos. Meas. Tech.*, 14(11), 6955–6972, doi:10.5194/amt-14-
869 6955-2021, 2021.

870 Xu, W., Lambe, A., Silva, P., Hu, W., Onasch, T., Williams, L., Croteau, P., Zhang, X.,
871 Renbaum-Wolff, L., Fortner, E., Jimenez, J. L., Jayne, J., Worsnop, D. and Canagaratna, M.:

872 Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne
873 Aerosol Mass Spectrometer, *Aerosol Sci. Technol.*, 52(6), 626–641,
874 doi:10.1080/02786826.2018.1439570, 2018.

875 Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R. and
876 Jimenez, J. L.: Deconvolution and quantification of hydrocarbon-like and oxygenated organic
877 aerosols based on aerosol mass spectrometry, *Environ. Sci. Technol.*, 39(13), 4938–4952,
878 doi:10.1021/es0485681, 2005.

879 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
880 Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.
881 F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa,
882 N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams,
883 P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M.
884 and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in
885 anthropogenically-influenced Northern Hemisphere midlatitudes, *Geophys. Res. Lett.*, 34(13),
886 doi:10.1029/2007gl029979, 2007.

887 Zhang, Y., Williams, B. J., Goldstein, A. H., Docherty, K., Ulbrich, I. M. and Jimenez, J. L.: A
888 Technique for Rapid Gas Chromatography Analysis Applied to Ambient Organic Aerosol
889 Measurements from the Thermal Desorption Aerosol Gas Chromatograph (TAG), *Aerosol Sci.*
890 *Technol.*, 48(11), 1166–1182, doi:10.1080/02786826.2014.967832, 2014.

891 Zhang, Y., Williams, B. J., Goldstein, A. H., Docherty, K. S. and Jimenez, J. L.: A technique for
892 rapid source apportionment applied to ambient organic aerosol measurements from a thermal
893 desorption aerosol gas chromatograph (TAG), *Atmospheric Measurement Techniques*, 9(11),
894 5637–5653, doi:10.5194/amt-9-5637-2016, 2016.

895

896