Preprints
https://doi.org/10.5194/ar-2024-12
https://doi.org/10.5194/ar-2024-12
15 Apr 2024
 | 15 Apr 2024
Status: a revised version of this preprint is currently under review for the journal AR.

Applicability of small-scale black carbon sensors to explore high resolution spatial variability of ambient black carbon

Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä

Abstract. Black Carbon (BC) is a particulate pollutant emitted as a by-product of combustion. BC has an emerging role in air quality monitoring with the current recommendations by the World Health Organization, that systematic measurements of BC should be conducted to capture the temporal and spatial variability of BC. To observe this variability, especially in urban areas, a large quantity of sensor-type measurements is required. In this study, four different types of small-scale filter-based BC sensors (AE51, MA200, MA350, Observair) were used to build a sensor network in Kumpula campus, Helsinki, Finland. Our aim was to test the applicability of the sensors to monitor ambient BC concentrations in field conditions and to study the variation of BC in high resolution. The results were compared to a reference level instrument (MAAP) for validation. During intercomparisons, the sensors had a good correlation with the reference and after a simple orthogonal regression calibration, were deemed suitable for deployment in the sensor network. During deployment, the sensor network proved to be able to capture small scale temporal and spatial differences in BC concentrations and showed potential for source-apportionment applications. The changes in temperature (T) and relative humidity (RH) were observed to induce error in the BC measurements. This error was amplified by the dualspot correction, which was worsening the measurement result under instable conditions of T and RH. This should be considered when using sensors that apply this correction automatically. The environmental compensation used by the Observair sensors reduced the error from the changing T and RH. To reduce the effect of changing T and RH, more robust environmentally controlled boxes should be developed or correction algorithms, such as environmental compensation, should be applied.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on ar-2024-12', Anonymous Referee #1, 24 May 2024
    • AC1: 'Reply on RC1', Tapio Elomaa, 30 May 2024
  • RC2: 'Comment on ar-2024-12', Anonymous Referee #2, 28 Jun 2024
    • AC2: 'Reply on RC2', Tapio Elomaa, 17 Sep 2024
Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä
Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä

Viewed

Total article views: 573 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
422 118 33 573 23 23
  • HTML: 422
  • PDF: 118
  • XML: 33
  • Total: 573
  • BibTeX: 23
  • EndNote: 23
Views and downloads (calculated since 15 Apr 2024)
Cumulative views and downloads (calculated since 15 Apr 2024)

Viewed (geographical distribution)

Total article views: 520 (including HTML, PDF, and XML) Thereof 520 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
Black Carbon (BC) is a pollutant from combustion that affects the climate and is harmful to health. We tested four different small BC sensors with a reference in Helsinki. The sensors compared well with the reference. As a sensor network they were able to capture differences in BC. Changes in temperature (T) and relative humidity (RH) caused error in the measurement. To reduce the effects of T and RH on BC sensors, more robust boxes should be developed or corrections should be applied.
Altmetrics