Preprints
https://doi.org/10.5194/ar-2024-16
https://doi.org/10.5194/ar-2024-16
21 Jun 2024
 | 21 Jun 2024
Status: this preprint is currently under review for the journal AR.

Cluster-to-particle transition in atmospheric nanoclusters

Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm

Abstract. The formation of molecular clusters is an imperative step leading to the formation of new aerosol particles in the atmosphere. However, the point at which a given assembly of molecules represent an atmospheric molecular cluster or a particle remains ambiguous. Applying quantum chemical calculations we elucidate this cluster-to-particle transition process in atmospherically relevant sulfuric acid–base clusters. We calculated accurate thermodynamic properties of large (SA)n (base)n clusters (n = 1−15), with SA being sulfuric acid and the base being either ammonia (AM), methylamine (MA), dimethylamine (DMA) or trimethylamine (TMA). Based on our results, we deduce a property-based criteria for defining “freshly nucleated particles (FNPs)”, that act as a boundary between discrete cluster configurations and bulk particles. We define the onset of FNPs as when one or more ions are fully solvated inside the cluster and when the gradient of the change in free energy per monomer (m) approaches zero. This definition easily allows the identification of FNPs and is applicable to particles of arbitrary chemical composition. For the (SA)n (base)n clusters studied here the cluster-to-particle transition point occurs around 16–20 monomers.

We find that the formation of FNPs in the atmosphere depend highly on the cluster composition and atmospheric conditions. For instance, at low temperature (278.15 K) and high precursor concentration (AM = 10 ppb and MA = 10 ppt) the SA–AM and SA–MA systems can form clusters that grow to ∼1.8 nm sizes. The SA–DMA system form clusters that grow to larger sizes at low temperature (278.15 K), independent of the concentration (DMA = 1 − 10 ppt) and the SA–TMA system can only form small clusters, that are unable to grow to larger sizes.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm

Status: open (until 16 Aug 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on ar-2024-16', Shuai Jiang, 12 Jul 2024 reply
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm

Viewed

Total article views: 196 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
150 35 11 196 8 5 6
  • HTML: 150
  • PDF: 35
  • XML: 11
  • Total: 196
  • Supplement: 8
  • BibTeX: 5
  • EndNote: 6
Views and downloads (calculated since 21 Jun 2024)
Cumulative views and downloads (calculated since 21 Jun 2024)

Viewed (geographical distribution)

Total article views: 194 (including HTML, PDF, and XML) Thereof 194 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 24 Jul 2024
Download
Short summary
The exact point at which a given assembly of molecules represent an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods we here explore the cluster-to-particle transition point. Based on our results, we deduce a property-based criteria for defining “freshly nucleated particles (FNPs)”, that act as a boundary between discrete cluster configurations and bulk particles.
Altmetrics