Supplementary Information

Performance evaluation of four cascade impactors for airborne UFP collection: Influence of particle type, concentration, mass and chemical nature

Elisabeth Eckenberger¹, Andreas Mittereder², Nadine Gawlitta³⁺⁴, Jürgen Schnelle-Kreis³⁺⁴, Martin Sklorz⁴, Dieter Brüggemann², Ralf Zimmermann³⁺⁴, Anke C. Nölscher¹

⁴ Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Germany

Correspondence to: Elisabeth Eckenberger (Elisabeth.eckenberger@uni-bayreuth.de), Anke C. Nölscher (Anke.noelscher@uni-bayreuth.de)

¹ Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Germany

² Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Germany

³ Comprehensive Molecular Analytics (CMA), Helmholtz Munich, Germany

Figure S1: Schematic experimental setup used to evaluate the cut-off characteristics of various impactors, namely 120R MOUDI, ELPI, PENS, and ultraMOUDI. Three different types of particles were generated: (1) NaCl (produced by spraying a saline solution), (2) SimSOA (generated through a chamber experiment involving particle formation from alpha-pinene and ozone, including seed particles), and (3) soot (produced by a diesel engine) (Section 2.2.2). These particles were passed through the impactor (both with and without nozzles and impaction plates). The transmitted particle size distributions were measured downstream of the impactor using either a DMS500 or MPSS. Additionally, a pump was placed behind the impactor to regulate the flow through the impactor. An overview of the size distributions of each generated particle type is also provided.

Parameter	HPLC-MS neg	HPLC-MS pos	HPLC-FLD	
Analytical	Gemini 5u C18 110A	Gemini 5u C18 110A	EC 125/4 Nucleosil 100-5 C18	
column	(150 mm x 4.6 mm, 5 µm)	(150 mm x 4.6 mm, 5 µm)	HD	
			(125 mm x 4 mm, 5 µm)	
Column	40 °C	30 °C	30 °C	
temperature				
Injection	20 µL	20 µL	25 μL	
volume				
Autosampler	_	_	-5 °C	
temperature				
Flow rate	0.5 mL/min	0.3 - 0.5 mL/min	1 mL/min	
Gradient	A) 80% ACN, B) 4 mM H	ICOOH A) 80%MeOH, B) 4 mM	A) ACN, B) H ₂ O (Milli-pore)	
	0 min 5% A	НСООН	0 min 60% A	
	1 min 5% A	0 min 50% A	5 min 70% A	
	18 min 50% A	3 min 80% A	8 min 70% A	
	21 min 100% A	12 min 100% A	12 min 80% A	
	29 min 100% A	18 min 90% A	15 min 80% A	
	31 min 5% A	20 min 50% A	19 min 90% A	
		25 min 75% A	22 min 60% A	
Detector	MSD	MSD	FLD	
	Time ESI(-)-m/z-ions	Time ESI(+)-m/z-ions	Time $\lambda_{ex} / \lambda_{em}$ [nm]	
	0 min 207	0 min 212, 227, 269	0 min 259 / 386	
	8 min 111, 157, 171, 185	5 12 min 257, 261, 299	3.3 min 242 / 388	
	18 min 121, 135, 183		5.8 min 250 / 370	
	25 min 193, 217		7.5 min 270 / 390	
			13 min 290 / 430	

Table S1: Overview of HPLC methods applied for mass based chemical analyisis applied on the environmental UFP samples.

			LOD _{Air}		External standard	
			$[pg/m^3]$		calculation	
Marker	Method	Recovery			Response	
			43.2 m ³	5.76 m ³	factor	R ²
					$[AU/\mu g/L]$	
Levo	HPLC-MS	$86\pm9\%$	130.09	975.67	442.68	0.99
	neg					
PA	HPLC-MS	84±6%	186.57	1399.28	4415.4	0.99
	neg					
ТА	HPLC-MS	85±6%,	171.76	1288.20	3352.9	0.99
	neg					
6PPD	HPLC-MS	75±7%	40.17	301.26	26766	0.98
	pos					
BaP	HPLC-	78±5%	1.62	12.15	10.116	1.00
	FLD/UV					
BbF	HPLC-	74 <u>+</u> 4%	1.16	8.70	12.15	1.00
	FLD/UV					

Table S2: Specifications regarding the different marker compounds that were analyzed and chosen for this study.

Figure S2: logarithmic representation of Fig. 6b.

1.1 Estimation of Impactor Uncertainties

To accurately assess the overall measurement uncertainty associated with the various impactors used in our study, we applied Gaussian error propagation. The overall chemical analysis error was 9% for all impactors. For the Ultra MOUDI impactor, in addition to the analysis error, the flow error was 10% and the handling error was increased to 10%. This adjustment leads to a total measurement uncertainty for the Ultra MOUDI of approximately 16.76%. The ELPI impactor had a flow error of 3% and an increased handling error of 15%, resulting in a total measurement uncertainty of around 17.75%. For the 120R MOUDI impactor, the flow error was 3% and the handling error was increased to 10%, leading to a total measurement uncertainty of approximately 13.78%. For the PENS impactor, the flow error was 5% and the handling error was increased to 10%, resulting in a total measurement uncertainty of approximately 14.35%.