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Abstract  16 

The coronavirus outbreak in 2020 had devastating impact on human life, albeit a positive effect 17 

for the environment reducing emissions of primary aerosols and trace gases and improving air quality. 18 

In this paper, we present inverse modelling estimates of ammonia emissions during the European 19 

lockdowns of 2020 based on satellite observations. Ammonia has a strong seasonal cycle and mainly 20 

originates from agriculture. We further show how changes in ammonia levels over Europe, in 21 

conjunction with decreases in traffic-related atmospheric constituents modulated PM2.5. The key 22 

result of this study is a -9.8% decrease in ammonia emissions in the first half of 2020 compared to 23 

the same period in 2016–2019 attributed to restrictions related to the global pandemic. We further 24 

calculate the delay in the evolution of the ammonia emissions in 2020 before, during and after 25 

lockdowns, by a sophisticated comparison of the evolution of ammonia emissions during the same 26 

time periods for the reference years (2016–2019). Our analysis demonstrates a clear delay in the 27 

evolution of ammonia emissions of -77 kt, that was mainly observed in the countries that suffered the 28 

strictest travel, social and working measures. Despite the general drop in emissions during the first 29 

half of 2020 and the delay in the evolution of the emissions during the lockdown period, satellite and 30 

ground-based observations showed that the European levels of ammonia increased. On one hand, this 31 

was due to the reduction of 𝑆𝑂! and 𝑁𝑂" (precursors of the atmospheric acids with which ammonia 32 

reacts) that caused less binding and thus less chemical removal of ammonia (smaller loss – higher 33 

lifetime); on the other, the majority of the emissions persisted, because ammonia mainly originates 34 

from agriculture, a primary production sector that was influenced slightly by the lockdown 35 

restrictions. Despite the projected drop in various atmospheric aerosols and trace gases, PM2.5 levels 36 

stayed unchanged or even increased in Europe, due to a number of reasons attributed to the 37 

complicated 𝑁𝐻# - 𝐻!𝑆𝑂$ - 𝐻𝑁𝑂# system. Higher water vapour during the European lockdowns 38 

favoured more sulfate production from 𝑆𝑂! and 𝑂𝐻 (gas phase) or 𝑂# (aqueous phase). Ammonia 39 

first reacted with sulfuric acid also producing sulfate. Then, the continuously accumulating free 40 

ammonia reacted with nitric acid shifting the equilibrium reaction towards particulate nitrate. In high 41 

free ammonia atmospheric conditions such as those in Europe during the 2020 lockdowns, a small 42 

reduction of 𝑁𝑂" levels drives faster oxidation toward nitrate and slower deposition of total inorganic 43 

nitrate causing high secondary PM2.5 levels. 44 

  45 
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1 Introduction 46 

Ammonia (NH3), the most abundant gas, has played a vital role in the evolution of human 47 

population through the Haber–Bosch process (Chen et al., 2019). However, today it is recognized to 48 

have significant negative influence, not only for the environment (Stevens et al., 2010), but also for 49 

human population (Cohen et al., 2017; Pope and Dockery, 2006) and the climate (De Vries et al., 2011). 50 

As an alkaline molecule, ammonia regulates the pH of clouds, while its excessive atmospheric 51 

deposition and terrestrial runoff affect natural reservoirs creating algae blooms and degrading water 52 

quality (Camargo and Alonso, 2006; Krupa, 2003). When emitted to the atmosphere, it reacts with 53 

the abundant sulfuric and nitric acids (Malm, 2004) forming sulfate, nitrate, and ammonium and 54 

contributing up to 50% to the total aerosol mass (Anderson et al., 2003). The latter has implications 55 

for human health (Gu et al., 2014) as aerosols penetrate the human respiratory system and accumulate 56 

in the lungs (Pope III et al., 2002) causing premature mortality (Lelieveld et al., 2015). Furthermore, 57 

through secondary aerosol formation (Pozzer et al., 2017), ammonia has a significant impact (i) on 58 

regional climate (Bellouin et al., 2011) causing visibility problems and contributing to haze effect, 59 

and (ii) on global climate directly by scattering incoming radiation (Henze et al., 2012) and indirectly 60 

as cloud condensation nuclei (Abbatt et al., 2006) altering the Earth’s radiative balance. 61 

The largest portion of atmospheric ammonia originates from the synthesis of nitrogen 62 

fertilizers, which are in high demand for agriculture (Erisman et al., 2007). The expansion of intensive 63 

agriculture during the 20th century has increased atmospheric ammonia above natural levels (Erisman 64 

et al., 2008), while the projected growth of the global population will likely create larger nutritional 65 

needs that are expected to further increase ammonia emissions during the 21st century (Pai et al., 66 

2021). Other sources of ammonia include emissions from livestock (Sutton et al., 2000a), industry, 67 

ammonia-rich watersheds (Sørensen et al., 2003), traffic (Kean et al., 2009), sewage (Reche et al., 68 

2012), humans (Sutton et al., 2000b), biomass and domestic combustion (Sutton et al., 2008; Fowler 69 

et al., 2004) and volcanic eruptions (Sutton et al., 2008). 70 

In the past years, atmospheric ammonia observations were mostly limited to ground-based 71 

measurements with relatively sparse monitoring networks. This resulted in large emission 72 

uncertainties in regions poorly covered by measurements (Heald et al., 2012). Today, satellite 73 

products are capable to record daily ammonia column concentrations providing useful information 74 

on its atmospheric abundance. Recently, Van Damme et al. (2021) analyzed Infrared Atmospheric 75 

Sounding Interferometer (IASI) retrievals and showed increased ammonia levels over most of Europe 76 

after 2015. Then, suddenly the COVID-19 outbreak came in 2020 creating a unique situation 77 

(Baekgaard et al., 2020), which affected all segments of life in a detrimental way (Chakraborty and 78 

Maity, 2020; Sohrabi et al., 2020). As a measure to inhibit further spread of the virus, authorities took 79 
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strict social, travel and working restrictions for months, which resulted in lower traffic-related 80 

emissions and improved air quality (Bauwens et al., 2020; Dutheil et al., 2020; Sicard et al., 2020). 81 

Illustrating the impact on emissions, Guevara et al. (2021) reported average emission reductions in 82 

Europe to be 33% for 𝑁𝑂", 8% for non-methane volatile organic compounds (NMVOCs), and 7% 83 

for SOx during the strictest lockdowns in 2020, while more than 85% of the total reduction is 84 

attributed to road transport. CO2 emissions were also decreased by 11% over Europe during the first 85 

lockdowns (Diffenbaugh et al., 2020), so as aerosols did; notably Black Carbon (BC) emissions 86 

dropped by 11% (Evangeliou et al., 2020) and Aerosol Optical Depth (AOD) decreased up to 20% 87 

over Central and Northern Europe (Acharya et al., 2021).  88 

While the COVID-19 lockdown impact on emissions for primary aerosols and trace gases has 89 

been studied extensively, how ammonia emissions were affected in Europe is unknown. The latter is 90 

very important and may have largely moderated the atmospheric levels of particulate matter (Giani 91 

et al., 2020; Guevara et al., 2021; Matthias et al., 2021), because of ammonia’s contribution to 92 

secondary PM2.5 (particulate matter) formation (Anderson et al., 2003). Here, we make use of 93 

satellite measurements of ammonia and a novel inversion algorithm to track how ammonia emissions 94 

changed before, during and after the European lockdowns in 2020. We examine the reasons behind 95 

the estimated changes and validate the results against ground-based observations from the EMEP 96 

measurement network (https://emep.int/mscw/, Figure S 1). Finally, we calculate the resulting impact 97 

of ammonia changes during the European lockdowns on the formation of PM2.5 using a chemistry 98 

transport model (CTM) and try to interpret the mechanisms governing these changes. 99 

2 Methods 100 

2.1 Cross-Track Infrared Sounder (CrIS) ammonia measurements 101 

The CrIS sensor onboard the NASA Suomi National Polar-orbiting Partnership provides 102 

atmospheric soundings at high spectral resolution (0.625 cm-1) (Shephard et al., 2015) resulting in 103 

improved vertical sensitivity for ammonia at the surface (Zavyalov et al., 2013). The CrIS fast 104 

physical algorithm (Shephard and Cady-Pereira, 2015) retrieves ammonia at 14 vertical levels using 105 

a physics-based optimal estimation retrieval, which also provides the vertical sensitivity (averaging 106 

kernels) and an estimate of the retrieval errors (error covariance matrices) for each measurement. 107 

Shephard et al. (2020) reports a total column random measurement error of 10–15%, with total 108 

random errors of ~30%. The individual profile random errors are 10–30%, while total profile random 109 

errors increase above 60% due to the limited vertical resolution (Shephard et al., 2020). Vertical 110 

sensitivity and error calculations are also important when using CrIS observations in satellite inverse 111 

modelling applications (Li et al., 2019; Cao et al., 2020) as a satellite observational operator can be 112 

https://emep.int/mscw/
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generated in a robust manner (see next sections). The detection limit of CrIS measurements has been 113 

calculated down to 0.3–0.5 ppbv (Shephard et al., 2020) and the product has been validated 114 

extensively against ground-based observations (Dammers et al., 2017; Kharol et al., 2018) showing 115 

small differences and high correlations. 116 

Daily CrIS ammonia satellite measurements (version 1.6.2) were gridded on 0.5°×0.5° covering 117 

all Europe (10°W–50°E, 25°N–75°N) from 1st January to 30th June 2020. Data were screened prior 118 

to its use with Quality Flag ³ 4, as recommended in the CrIS documentation, and Cloud Flag ¹ 1. The 119 

latter excludes retrievals that are performed under thin cloud conditions and are not as reliable as 120 

retrievals performed under cloud-free conditions (White et al., 2023). Gridding was chosen to limit 121 

the large number of observations (around 10,000 per day per vertical level for 2550 retrievals January 122 

to June 2020), hence the need for a large number of source-receptor matrices (SRMs), which is 123 

computationally inefficient. Specifically, day and night-time observations from CrIS were averaged 124 

in each 0.5° resolution grid-cell daily from 1st January to 30th June 2020. This gridding method, 125 

although simple, it gives more robust results than classic interpolation methods and presents small 126 

standard deviations of the gridded values (see Tichý et al., 2023). Sitwell and Shephard (2021) 127 

showed that the averaging kernels of CrIS ammonia are significant only for the lowest six levels (the 128 

upper eight have no influence into the satellite observations) and therefore we have considered these 129 

six vertical levels (~1018-619 hPa). 130 

2.2 Source-receptor matrix (SRM) calculations 131 

SRMs were calculated for each 0.5°×0.5° grid-cell over Europe (10°W–50°E, 25°N–75°N) 132 

using the Lagrangian particle dispersion model FLEXPART version 10.4 (Pisso et al., 2019) adapted 133 

to model ammonia. The model releases computational particles that are tracked backward in time 134 

using hourly ERA5 (Hersbach et al., 2020) assimilated meteorological analyses from the European 135 

Centre for Medium-Range Weather Forecasts (ECMWF) with 137 vertical layers and a horizontal 136 

resolution of 0.5°×0.5°. FLEXPART simulates turbulence (Cassiani et al., 2015), unresolved 137 

mesoscale motions (Stohl et al., 2005) and convection (Forster et al., 2007). SRMs were calculated 138 

for 7 days backward in time, at temporal intervals that matched satellite measurements and at spatial 139 

resolution of 0.5°×0.5°. This 7-day backward tracking is sufficiently long to include almost all 140 

ammonia sources that contribute to surface concentrations at the receptors given a typical atmospheric 141 

lifetime of about a day (Evangeliou et al., 2021; Van Damme et al., 2018). 142 

The complicated heterogeneous chemistry of ammonia was modelled with the Eulerian model 143 

LMDz-OR-INCA, which couples the LMDz (Laboratoire de Météorologie Dynamique) General 144 

Circulation Model (GCM) (Hourdin et al., 2006) with the INCA (INteraction with Chemistry and 145 

Aerosols) model (Folberth et al., 2006; Hauglustaine et al., 2004) and with the land surface dynamical 146 
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vegetation model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) 147 

(Krinner et al., 2005). The model has a horizontal resolution of 2.5°×1.3°, and 39 hybrid vertical 148 

levels extending to the stratosphere. It accounts for large-scale advection of tracers (Hourdin and 149 

Armengaud, 1999), deep convection (Emanuel, 1991), while turbulent mixing in the planetary 150 

boundary layer (PBL) is based on a local second-order closure formalism. The model simulates 151 

atmospheric transport of natural and anthropogenic aerosols and accounts for emissions, transport 152 

(resolved and sub-grid scale), and dry and wet (in-cloud/below-cloud scavenging) deposition of 153 

chemical species and aerosols interactively. LMDz-OR-INCA includes a full chemical scheme for 154 

the ammonia cycle and nitrate particle formation, as well as a state-of-the-art 155 

CH4/NOx/CO/NMHC/O3 tropospheric photochemistry (Hauglustaine et al., 2014). The global 156 

transport of ammonia was simulated for 2020 with a month of spin-up by nudging the winds of the 157 

3-hourly ERA5 (Hersbach et al., 2020) with a relaxation time of 10 days (Hourdin et al., 2006).  158 

For the calculation of ammonia’s lifetime, LMDz-OR-INCA ran with traditional emissions for 159 

anthropogenic, biomass burning and oceanic emission sources from ECLIPSEv5 (Evaluating the 160 

CLimate and Air Quality ImPacts of Short-livEd Pollutants), GFED4 (Global Fire Emission Dataset) 161 

and GEIA (Global Emissions InitiAtive) (hereafter called “EGG”) (Bouwman et al., 1997; Giglio et 162 

al., 2013; Klimont et al., 2017). FLEXPART uses the exponential mass removal for radioactive 163 

species based on the e-folding lifetime (Pisso et al., 2019), which gives the time needed to reduce the 164 

species mass to 1/e contribution. We calculated the e-folding lifetime (Kristiansen et al., 2016; Croft 165 

et al., 2014) of ammonia from LMDz-OR-INCA, assuming that the loss occurs as a result of all 166 

processes affecting ammonia (chemical reactions, deposition) with a minimum time-step of 1800 s. 167 

Then we calculated the exponential loss of ammonia and the respective loss-rate constant 𝜅 (s-1). We 168 

point to Tichý et al. (2023) for more details on the methodology to avoid repetition. 169 

Ammonia has a complicated atmospheric chemistry and may react with sulfuric and nitric acid 170 

producing sulfate and nitrate. However, under certain atmospheric conditions, the equilibrium 171 

reaction with nitric acid can be shifted to the left producing free ammonia (Seinfeld and Pandis, 2000). 172 

Tichý et al. (2023) showed that production of free ammonia happened very rarely in continental 173 

Europe in 2013–2020 period. Nevertheless, we have previously published a full validation of the 174 

obtained CTM concentrations against all the available ground-based measurements of ammonia 175 

globally (Tichý et al., 2023), from the EMEP network (https://emep.int/mscw/) in Europe, EANET 176 

(East Asia acid deposition NETwork) in Southeastern Asia (https://www.eanet.asia/) and AMoN 177 

(Ammonia Monitoring Network in the US, AMoN-US; National Air Pollution Surveillance Program 178 

(NAPS) sites in Canada) in North America (http://nadp.slh.wisc.edu/data/AMoN/) . 179 

https://emep.int/mscw/
https://www.eanet.asia/
http://nadp.slh.wisc.edu/data/AMoN/
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2.3 Inverse modelling of ammonia emissions  180 

The proposed inversion method is based on a comparison of the CrIS satellite observations with 181 

the model profile retrievals to estimate the spatiotemporal ammonia emissions. The comparison of 182 

remote-sense observations such as CrIS with model (or in-situ) profiles is not straightforward as in 183 

the cases of ground-based observations. Here, we used the more rigorous approach of the “instrument 184 

operator” (see equation below), after interpolation of the model profile to the first six levels of the 185 

satellite product (Rodgers, 2000): 186 

ln(𝑣!"#) = ln(𝑣$) + 𝐴(ln(𝑣#!%") − ln(𝑣$))  Eq.  1 187 

where 𝑣!"# is the retrieved profile concentration vector, 𝑣$ is a priori profile concentration vector, 188 

𝑣#!%" is the true profile concentration vector, and 𝐴	 is the averaging kernel matrix in logarithmic 189 

space (for each 0.5°×0.5° resolution grid-cell). In our inversion setup, we directly compared the 190 

retrieved 𝑣!"# and the observed satellite column concentration 𝑣%&' that is given by CrIS. In our case, 191 

𝑣'()* is equal to the modelled concentration 𝑣&'( calculated from the SRMs and a prior emission 192 

inventory. The argument for this approach is that 𝑣!"#	is what the satellite would observe if 𝑣&'( was 193 

the true profile. This is a useful technique for evaluating if the retrieval algorithm is performing as 194 

designed, i.e., is it unbiased and the calculated root mean square error (RMSE) is within the expected 195 

variability. Further details about the algorithm and the setup can be found in Tichý et al. (2023). 196 

The goal of the inversion is to iteratively update prior emissions by minimizing the distance 197 

between 𝑣%&' and 𝑣(*' by correcting the emission flux 𝑥	 in the term 𝑣&'( = 𝑠𝑟𝑚)*"+𝑥$ (𝑠𝑟𝑚)*"+ 198 

denotes the FLEXPART SRMs), at each grid-cell and each of the six vertical levels that are important 199 

for CrIS (Sitwell et al., 2022): 200 

arg min
+!→+

4|𝑣-$# − 𝑣!"#|4
.

.  Eq.  2 201 

The inverse problem is constructed for each spatial element of the computational domain. 202 

Inspired by the construction of covariance matrix in Cao et al. (2020), we consider 4° surroundings 203 

(445 km), expressed by the index set 𝕊	, of which the column concentrations are considered due to 204 

computational effectivity. Note that we observed low sensitivity of resulting emission estimates to 205 

this choice. Then, we can formulate the inverse problem for each spatial element as:  206 

6𝑣-"
-$#;  𝑠/ ∈ 𝕊; = 6𝑣-"

!"#;  𝑠/ ∈ 𝕊;𝑞𝕊  Eq.  3 207 

where the left side of the equation is formed by the vector with aggregated CrIS observations, vectors 208 

𝑣-"
!"# form a block-diagonal matrix, and 𝑞𝕊 is an unknown vector with correction coefficients for each 209 

temporal element of the emission. The inverse problem in Eq. 3 was solved using the least squares 210 

with adaptive prior covariance (LS-APC) algorithm (Tichý et al., 2016). The algorithm is based on a 211 
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Bayesian model which assumes that all coefficients are positive and that the abrupt changes in their 212 

neighbouring values are less probable. It is shown that the method is less sensible to manual tunning 213 

of regularization parameters (see sensitivity tests in Tichý et al. (2020)) than classical optimization 214 

procedures, which is crucial for such a large dataset where each spatial element represents a separate 215 

inverse problem.  216 

A detailed description of the algorithm is given in Tichý et al. (2016). Here, we do not describe 217 

the algorithm again but explain a few modifications that were necessary for this study. By estimating 218 

the correction coefficients 𝑞𝕊 for each grid-cell of the spatial domain (10°W–50°E, 25°N–75°N), we 219 

can propagate the coefficients through Eq. 2 to update a priori emissions 𝑥& in the model 220 

concentration term  𝑣&'(. We follow Li et al. (2019) and Cao et al. (2020) to bound the ratio between 221 

the prior and the posterior emissions. The lower and upper bound of this ratio is set to 0.01 and 100, 222 

respectively, to omit the unrealistically low or high emissions. We consider these bounds large 223 

enough to allow for new emission sources to be exposed, not presented in the prior emissions.  224 

We evaluate the performance of the inversion by using three a priori emission datasets, (i) one 225 

based on Van Damme et al. (2018) calculations (Evangeliou et al., 2021) (hereafter denoted as “VD”), 226 

(ii) the ECLIPSEv6 inventory (Klimont, 2022; Klimont et al., 2017) (combined with biomass burning 227 

emissions from GFEDv4 (Giglio et al., 2013)) as the most recent one (denoted as “EC6G4”), and (iii) 228 

the average of four emission inventories for ammonia, except for these two mentioned before, “EGG” 229 

(see previous section), and “NE” calculated from IASI (Infrared Atmospheric Sounding 230 

Interferometer) observation (Evangeliou et al., 2021) (denoted as “avgEENV”). To account for the 231 

spatiotemporal impact of the lockdown on the European emissions, we corrected prior emission 232 

inventories of ammonia (EGG, EC6G4 and avgEENV) for 2020 using adjustment factors (AFs) 233 

adopted from Doumbia et al. (2021). The same was done for 𝑆𝑂! and 𝑁𝑂" (precursors of sulfuric and 234 

nitric acid in the atmosphere) in EGG that was used to calculate ammonia’s loss rates using LMDz-235 

OR-INCA model (see section 2.2). This dataset provides, for the January–August 2020 period, 236 

gridded AFs at a 0.1°×0.1° resolution on a daily resolution for transportation (road, air and ship 237 

traffic), power generation, industry and residential sectors. The quantification of AFs is based on 238 

activity data collected from different databases and previously published studies. These emission AFs 239 

have been applied to the CAMS global inventory, and the changes in emissions of the main pollutants 240 

have been assessed for different regions of the world in the first 6 months of 2020 (Doumbia et al., 241 

2021). 242 

Figure 1 shows the comparison of prior and posterior concentrations against independent 243 

observations (observations that were not used in the inversion algorithm) from the EMEP network 244 

(https://emep.int/mscw/, Figure S 1) for January–July 2020. Note that prior concentrations of 245 

https://emep.int/mscw/
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ammonia result by coupling the FLEXPART SRMs with prior emissions (from VD, ECLIPSEv6 and 246 

avgEENV), while posterior concentrations by coupling the SRMs with the calculated posterior 247 

emissions. In Figure 1 it is evident that the most accurate reconstruction of surface concentrations 248 

with respect to the EMEP observations was obtained using avgEENV as the a priori information, and 249 

therefore the results presented hereafter are based on this setup. We performed inversions for the first 250 

half of 2020 to assess the effect of lockdown measures on ammonia emissions, as well as the situation 251 

after lockdown measures were taken away (rebound period). To have a more generic view, we also 252 

performed inverse modelling calculations for the first half of each year between 2016–2019 (reference 253 

period). Then, we assess in impact of ammonia changes on aerosol formation (PM2.5), by feeding 254 

the posterior emissions to the LMDz-OR-INCA model and calculating the production of PM2.5. 255 

2.4 Statistical tests 256 

To evaluate the comparisons between modelled and observed concentrations of ammonia, we 257 

used the root mean squared logarithmic error (RMSLE) defined as follows: 258 

𝑅𝑀𝑆𝐸 = /∑ (-!.-")#

0
0
123  and 𝑅𝑀𝑆𝐿𝐸 = /3

0
∑ (log 𝐶4 − log 𝐶5)!0
123   Eq.  4 259 

where 𝐶4 and 𝐶5 are the modelled and measured ammonia concentrations and 𝑁 is the total number 260 

of observations. The commonly used squared Pearson correlation coefficient (𝑟) was also used as a 261 

measure of linear correlation between two sets of data defined as: 262 

𝑟 = ∑(𝐶𝑚−𝐶𝑚####)(𝐶𝑜−𝐶𝑜$ )

%(𝐶𝑚−𝐶𝑚####)
1(𝐶𝑜−𝐶𝑜$ )

1
  Eq.  5 263 

where the distance of modelled and measured ammonia concentrations from the mean (𝐶&>>>> and 𝐶'>>>) is 264 

computed. Finally, the standard deviation was adopted as a measure of the dispersion of modelled 265 

ammonia from the observations, which is the true value: 266 

𝜎 = $(𝐶𝑚&𝐶𝑜)1

(
  Eq.  6 267 

The mean fractional bias (𝑀𝐹𝐵) was selected as a symmetric performance indicator that gives equal 268 

weights to under- or over-estimated concentrations (minimum to maximum values range from -200% 269 

to 200%). It was used in the independent validation (validation against measurements that were 270 

excluded from the inversion, see section 3.3) of the posterior concentrations of ammonia during the 271 

European lockdowns of 2020 and is defined as: 272 

𝑀𝐹𝐵 = 3
0
∑ (-!.-")&
'()
∑ (*!+*"

# )&
'()

  Eq.  7 273 
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For the same reason, the mean absolute error was computed normalized (𝑛𝑀𝐴𝐸) over the average of 274 

all the actual values (observations here), which is a widely used simple measure of error: 275 

𝑀𝐴𝐸 = ∑ |-!.-"|&
'()
∑ -"&
'()

  Eq.  8 276 

3 Results 277 

3.1 Emission changes of ammonia due to COVID-19 restrictions over Europe 278 

The reason behind the selected three priors used in the inversion (EGG, EC6G4 and avgEENV) 279 

of ammonia is trifold; (i) they are based on the most recent estimates, (ii) they present different spatial 280 

distribution, and (iii) they were derived using different methodologies. More specifically, EC6G4 is 281 

based on the emission model GAINS (Klimont et al., 2017), while VD uses satellite observations 282 

combined with a box model (Evangeliou et al., 2021). As mentioned in the previous section, it is seen 283 

that the most accurate representation of surface model concentrations was achieved using the 284 

avgEENV a priori, which forces posterior concentrations closer to 1×1 line, whereas the obtained 285 

statistics are significantly better than using other priors (Figure 1). Therefore, the results presented 286 

below have all been obtained using avgEENV as the prior emission dataset keeping results using the 287 

other two priors in the Supplements. 288 

The total prior emissions of ammonia over Europe for the inversion period (January – June), 289 

the posterior emissions for years 2016–2019 and the posterior emissions during the lockdown year 290 

2020 (January – June) are plotted in Figure 2 (the results from inversions using EC6G4 and VD prior 291 

emissions are illustrated in Figure S 2 and S 3). The total prior ammonia emitted between January 292 

and June in Europe were equal to 1061 kt (Figure 2a). To check whether calculated changes in 2020 293 

were due to meteorology and avoid misinterpretation of our findings, inverse calculations of ammonia 294 

were performed for the reference years 2016–2019 (January–June) using respective observations 295 

from CrIS and exactly the same set-up as the one described in section 2 (Methods). The total posterior 296 

emissions of ammonia over Europe for the reference period (2016 – 2019) were estimated to be 297 

1665±330 kt (4-y mean±SD) or 57% higher than the prior (Figure 2b). Finally, for January–June 298 

2020 the derived emission estimates were equal to 1568±172 kt (posterior±uncertainty) (Figure 2c). 299 

This is 48% higher than the prior and 6% lower than the posterior emissions of January–June 2016–300 

2019.  301 

The weekly-average evolution of prior and posterior emissions of ammonia over Europe 302 

(January to June) for 2016–2019 show a similar pattern with small year-to-year variability (Figure 303 

2d,e), and similar temperatures (Figure S 4) thus insignificant impact from the prevailing 304 
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meteorology that would justify change in emissions due to volatilisation. The weekly posterior 305 

ammonia emissions over Europe changed during the lockdown period (2020) as compared to the 306 

reference years (Figure 2f). Satellites and national monitoring measurements of ammonia show that 307 

emissions peak in spring (March) and late-summer in Europe (Van Damme et al., 2022) 308 

corresponding to the two main fertilization periods (Paulot et al., 2014). Ammonia abundances are 309 

however high throughout the entire spring–summer period due to agriculture associated with rising 310 

temperature (Sutton et al., 2013). Ammonia posterior emissions in 2020 declined by -9.8% as 311 

compared to the same period over the previous four years (2016–2019, Figure 2f). Although the 312 

obtained posterior emissions for the reference period (dashed grey line and shade) are very similar to 313 

those of 2020, (solid blue line and shade in Figure 2f), emissions during lockdown period in 2020 314 

dropped substantially, outside of the deviation of the emissions in the reference period (Figure 2f). 315 

3.2 Uncertainty of the posterior emissions 316 

As described in section 2.3 in more detail, we considered 4° surroundings of each spatial 317 

element of our inversion domain from which the CrIS observations were used in the inverse problem. 318 

This means that 45 spatial elements in CrIS space were used, with six vertical levels each, for each 319 

of the 26 temporal emission elements. To calculate the associated uncertainty of the posterior 320 

estimates, we tested two sources of uncertainty: (i) how different surroundings for each spatial 321 

element affect posterior emissions of ammonia and (ii) how the use of different prior emissions affects 322 

posterior ammonia. We organized a series of sensitivity tests using surroundings covering 2°, 3° and 323 

4° from each grid-cell. This selection is realistic as it was shown previously in Cao et al. (2020) for 324 

the construction of prior emission error covariance matrix. For the second source of uncertainty, we 325 

performed the same inversion using not only EC6G4 and VD priors, but also adding results using two 326 

more datasets for ammonia (in total four), which have 10 times higher emissions, namely EGG and 327 

NE (see section 2.3). 328 

The calculated absolute uncertainties are depicted in Figure 3a–c together with the relative 329 

uncertainty (Figure 3d) with respect to the posterior emissions of ammonia (posterior ammonia is 330 

shown in Figure 2c). The first source of uncertainty (different surroundings) slightly affects the 331 

resulting posterior emissions of ammonia (Figure 3a) causing an average relative uncertainty below 332 

4% in the European emissions. The second source of uncertainty (use of different priors) causes much 333 

larger bias as shown in Figure 3b (average relative uncertainty 35%). The reason for this is obviously 334 

the large variation of the EGG (Bouwman et al., 1997; Giglio et al., 2013; Klimont et al., 2017) and 335 

NE (Evangeliou et al., 2021) prior datasets that have total emissions in the first half of 2020 of 63.5 336 

and 53.3 Tg, respectively, in contrast to only 6.2 and 5.7 Tg for EC6G4 and VD. Hence, the results 337 

presented here are sensitive to the use of prior emission dataset. The modelled concentrations (that 338 

replaces the hypothetical true column concentration in Eq. 1) is calculated by the SRMs and the prior 339 



 12 

emission and, therefore, play a key role in the comparison of the CrIS value (𝑣-$#) and retrieved value 340 

(𝑣!"#) (see Eq. 2). Also, the modelled concentrations stand as the argument of the natural logarithm 341 

weighted by the averaging kernel in logarithmic space. The linearization of this operator as suggested 342 

by Sitwell and Shephard (2021) may reduce the dependency on the prior emission term, however, 343 

this is beyond the scope of this study. Overall, the propagated (absolute and relative) uncertainties of 344 

the posterior emissions are shown in Figure 3c and d and are equal to 11% over Europe on average 345 

(Figure 3). The latter shows that our calculations are robust on one hand, but dependent on the use 346 

of a priori information on the other. 347 

3.3 Validation of posterior ammonia against independent measurements 348 

The optimized emissions of ammonia must be validated against independent observations, 349 

because the inversion algorithm has been designed to reduce the model–observation mismatches. 350 

Here, the reduction of the posterior concentration differences from the observations from CrIS is 351 

determined by the weighting that is given to the observations and, hence, such comparison depends 352 

on this weighting (dependent observations). Therefore, the ideal comparison of any posterior 353 

emission resulting from top-down methods would be against measurements that were not included in 354 

the inversion algorithm (independent observations). Here, we used ground-based observations of 355 

ammonia from all EMEP sites (https://emep.int/mscw/) for the period of our study as an independent 356 

dataset for validation. All stations are illustrated in Figure S 1. 357 

As we mentioned in section 2.3, we evaluated the efficiency of the inversion and the most 358 

effective a priori dataset for our purpose by assessing the match between the calculated posterior 359 

concentrations against all the available observations from EMEP (N=3957) for the study period 360 

(Figure 1). More specifically, after it became evident that the most accurate results were obtained 361 

with avgEENV as the prior (relationship closer to unity against measured ammonia), we saw an 362 

immediate improvement in the statistical tests used (nRMSE, nMAE and RMSLE) when using the 363 

posterior emissions to model ammonia in FLEXPART during the first half of 2020 (Figure 1 – right 364 

panel). nMAE decreased from 0.80 using the prior emissions to 0.76 using the posterior ones, 365 

accordingly nRMSE of the posterior concentrations dropped to 0.073 as compared to -0.069 using 366 

the prior emissions, while the RMSLE decreased from 0.60 using prior emissions to 0.55 using the 367 

optimized a posteriori emissions. To get a better insight on how modelled concentrations improved 368 

towards ammonia observations, eight random EMEP stations were selected to show timeseries of 369 

prior and posterior concentrations in the first half of 2020 (Figure S 5). Although large peaks were 370 

not reproduced, all statistics were improved using the posterior emissions of ammonia. 371 

https://emep.int/mscw/
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3.4 Country-level changes due to COVID-19 restrictions 372 

To document the emission changes of ammonia over the different European countries before, 373 

during and after the 2020 lockdowns, we report the weekly evolution of the emissions for 16 countries 374 

individually (Figure 4). Specifically, weekly emissions were averaged for each country based on 375 

respective country definitions that are shown in Figure S 6 using the avgEENV prior. 376 

Most countries show that ammonia emissions declined or at least stayed less affected by the 377 

2020 lockdowns, as compared to the same period during the reference years (2016–2019). Countries 378 

with substantial decreases in the 2020 lockdown emissions were The Netherlands (-16%) and 379 

Belgium (-23%), both countries with important agricultural activity, as well as Denmark (-20%), 380 

Ireland (-18%) and Ukraine (-18%). Smaller changes were recorded in Spain (-2.1%), Czechia (-381 

4.0%) and Italy (-6.0%) despite the intensive lockdown measures. This practically shows that 382 

agricultural activity is insignificantly affected, even in periods of extraordinary austerity, as the last 383 

remaining primary production sector, necessary for human life. 384 

We note that the largest emissions of ammonia in European countries were seen around 385 

March–April (weeks 8–16) and in summer. These coincide with the fertilization periods mentioned 386 

previously (Paulot et al., 2014) that control the seasonality of ammonia’s emissions. In most European 387 

countries, the time of the year when fertilizers can be applied is tightly regulated (Ge et al., 2020). In 388 

the Netherlands and Belgium, for instance, the largest ammonia contributing region in Europe, 389 

application of nitrogen fertilizer is only allowed from February to mid-September. This produces two 390 

peak periods, in March and late May (Figure 4). Manure application also follows stringent 391 

regulations and is only allowed in the same periods depending on the type of manure (slurry or solid) 392 

and the type of land (grassland or arable land) (Van Damme et al., 2022).  393 

To understand and position where ammonia emissions changed during the European 394 

lockdowns of 2020, we plot the difference of the posterior emissions of ammonia during the lockdown 395 

period (15 March – 30 April) for the same period in Figure 5a. We calculate higher emissions of 396 

ammonia during the lockdown of +115 kt as compared to the prior emissions. Note that inversion 397 

algorithms aim at reducing the mismatches between modelled concentrations and observations (in 398 

our case, from CrIS satellite measurements) by correcting emissions. This means that different 399 

posterior emissions are most likely, due to errors in the prior emissions and do not indicate any impact 400 

from the restriction measures.  401 

Therefore, we demonstrate the impact of the COVID-19 lockdowns over Europe in 2020, by 402 

calculating the emission anomaly for the lockdown period from 2016–2020 (same period as the 2020 403 

lockdowns, namely 15 March – 30 April) in Figure 5b. Emissions during the 2020 lockdowns 404 
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dropped by -29 kt with respect to the same period in 2016 – 2020 showing the impact of the COVID-405 

19 restrictions. Maximum decreases were seen in The Netherlands and Belgium, both countries 406 

comprising high emissions (Figure 5b) that also suffered heavily from the COVID-19 outbreak 407 

(Bendz and Aaberge, 2020) and took strict lockdown measures. Other areas where significant changes 408 

were calculated were Northern Italy, Switzerland and Austria, while Scandinavian countries were not 409 

affected. This agrees well with the state of the epidemic in these countries in spring 2020. While 410 

North Italy was the first country outside China to suffer high mortality rates and, thus, dramatic social 411 

restrictions in spring 2020, Norway, Sweden, Denmark and Finland showed total infected cases far 412 

below 1% per capita, mostly suffering higher rates later in 2020 (Gordon et al., 2021).  413 

As mentioned previously, ammonia emissions increase in spring (March) and late-summer in 414 

Europe (Van Damme et al., 2022; Paulot et al., 2014). Therefore, calculating the difference in the 415 

calculated emissions during the lockdown from the period before or after is practically meaningless 416 

and cannot show the lockdown impact since agricultural activity was slightly affected in 2020. For 417 

this reason we quantify the delay in the evolution of the 2020 emissions by calculating emission 418 

differences in the lockdowns from the period before (Lock – Prelock) for the lockdown year 2020 419 

and emission differences (Lock – Prelock) for the reference years (2016 – 2019). Then, we plot their 420 

spatial differences in Figure 5c. Accordingly, we do the same calculation for differences in the 421 

rebound period (the period after the restrictions were relaxed) from the lockdown period (Rebound – 422 

Lock) in 2020 and compare them with Rebound – Lock for the reference years 2016 – 2019 (Figure 423 

5d). We observe a clear delay in the evolution of ammonia emissions in 2020 of -77 kt (Figure 5c), 424 

while only Scandinavian countries show positive changes. Hot-spots of negative evolution were seen 425 

in central Europe, mainly in the triptych of Northern Italy, Switzerland and Austria, for the reasons 426 

discussed in the previous paragraph. In Poland, social measures affected the daily lives of citizens 427 

significantly (Szczepańska and Pietrzyka, 2021) and might be the reason for the decreased evolution 428 

of ammonia emissions (Figure 5c). After the measures were relaxed, the evolution of the emissions 429 

rebounded slightly with respect to the reference period (2016 – 2019) as shown in Figure 5d. The 430 

changes in ammonia during the rebound period were concentrated in countries that were affected 431 

most severely from the lockdown restrictions, namely Northern Italy, Switzerland, Austria and 432 

Poland. The same has been reported elsewhere for several other pollutant emissions (Davis et al., 433 

2022; Jackson et al., 2022). 434 
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4 Discussion 435 

4.1 Rising ammonia concentrations during the European lockdowns 436 

One issue that has been overlooked is the concentrations of ammonia before, during and after 437 

the 2020 lockdowns in Europe. Despite the delay in the emissions during the lockdown period in 438 

2020 (section 3.4), satellite ammonia from CrIS showed an increase during the lockdowns and 439 

declined after the restrictions were relaxed in almost all European countries (Figure 4). The latter 440 

was reported in several studies analysing ground-based measurements. For example, Lovarelli et al. 441 

(2021) concluded that contrary to other air pollutants, ammonia was not reduced, when the COVID-442 

19 restrictions were introduced in North Italy. They further reported that urban and rural ammonia 443 

was the highest compared to previous years during the same months for which the strictest lockdowns 444 

occurred (i.e., spring 2020). Rennie et al. (2020) reported a slight decrease of ammonia in the UK, 445 

while Xu et al. (2022) observed increased of ambient ammonia during the lockdowns in China. 446 

Accordingly, Viatte et al. (2021) found enhanced ammonia during lockdown in Paris. Finally, in a 447 

recent study, Kuttippurath et al. (2023) reported increase in ammonia during lockdowns almost 448 

everywhere, with maxima in Western Europe, Eastern China, the Indian subcontinent and the Eastern 449 

USA. Since atmospheric ammonia has been increasing globally due to various anthropogenic 450 

activities, the European lockdowns in 2020 offer a unique opportunity to expose ammonia’s sources 451 

and address the importance of secondary PM2.5 formation. 452 

Figure 6a depicts the modelled atmospheric lifetime of ammonia and its dependence from the 453 

calculated loss-rates over Europe for the first half of 2020. Ammonia is a particularly interesting 454 

substance due to its affinity to react with atmospheric sulfuric and nitric acids producing secondary 455 

aerosols. However, the reaction with sulfuric acid is more prevalent due to several factors. For 456 

instance, sulfuric acid is a stronger acid than nitric acid, leading to more efficient reactions with 457 

ammonia (higher reaction rate constant for ammonia with sulfuric than with nitric acid, thus faster 458 

formation of ammonium sulfate) (Behera and Sharma, 2012). Furthermore, ammonium sulfate (final 459 

product of ammonia reaction with sulfuric acid) is less volatile and more thermodynamically stable 460 

than ammonium nitrate (product of the reaction with nitric acid) favoring the formation and 461 

persistence of ammonium sulfate particles in the atmosphere (Walters et al., 2019). Finally, sulfuric 462 

acid forms more stable clusters with ammonia, even in the presence of nitric acid (Liu et al., 2018). 463 

Results from laboratory and field studies have confirmed that ammonia actually promotes the 464 

nucleation of sulfuric acid in the atmosphere (Weber et al., 1999; Schobesberger et al., 2015). The 465 

CLOUD (Cosmics Leaving Outdoor Droplets) experiment has also highlighted that ammonia 466 

preferentially reacts with sulfuric acid in the atmosphere due to its strong acidity, ability to drive 467 

stable aerosol formation, and significant nucleation enhancement effects (Kirkby et al., 2016; Wang 468 
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et al., 2022). Nitric acid plays a secondary role, primarily forming ammonium nitrate once sulfuric 469 

acid has reacted, but its contribution is limited by its volatility.  470 

During the lockdown period over Europe, transport and industrial activities mostly stopped, 471 

and consequently the related emissions also decreased. This had an immediate effect on 𝑆𝑂! and 𝑁𝑂" 472 

(Guevara et al., 2021; Doumbia et al., 2021). Reductions of 𝑆𝑂! and 𝑁𝑂" caused less production of 473 

atmospheric sulfuric and nitric acids. The latter had a rapid twofold effect on the lifetime of ammonia: 474 

(i) Less available atmospheric acids needed less ammonia for reaction towards sulfate (mainly) and 475 

nitrate aerosols (secondarily) and therefore the loss-rates declined (Figure 6a) leading to 476 

accumulation of ammonia in its free form; (ii) ammonia originates mainly from agriculture and 477 

livestock, and these activities were slightly affected during the European lockdowns increasing the 478 

associated emissions (see Figure 2, though with a lower trend than previous years as discussed in 479 

section 3.4). The rising levels of ammonia during the COVID-19 lockdowns in Europe have been 480 

confirmed by the CrIS observations (Figure 2 and 3) and have been also reported elsewhere 481 

(Kuttippurath et al., 2023; Viatte et al., 2021; Xu et al., 2022; Lovarelli et al., 2021).  482 

4.2 Disturbance in the secondary formation of PM2.5  483 

The response of the restriction measures on PM2.5 mass concentrations suggests a 484 

relationship that is more complex than expected and beyond road traffic intensity, at least for Europe. 485 

It has been reported that there was no systematic decrease in PM2.5 concentrations during COVID-486 

19 lockdowns in the USA (Archer et al., 2020; Bekbulat et al., 2021) or even in Chinese cities (Mo 487 

et al., 2021), where primary sources are abundant and stringent lockdown measures decreased PM 488 

levels (Zhang et al., 2023). In a recent study focusing on PM2.5 measurements over 30 urban and 489 

regional background European sites, Putaud et al. (2023) showed that the implementation of the 490 

lockdown measures resulted in minor increases in PM2.5 mass concentration in Europe of +5±33%. 491 

The latter aligns well with several regional studies focusing on the impact of lockdowns to regional 492 

pollution (Querol et al., 2021; Shi et al., 2021; Viatte et al., 2021; Thunis et al., 2021; Putaud et al., 493 

2021). 494 

Figure 6b demonstrates observed PM2.5 from the EMEP stations (78 sites) in comparison 495 

with modelled PM2.5 concentrations, both averaged for all sites. In modelled PM2.5 mass 496 

concentrations, we have separated primary and secondary PM2.5, as secondary PM2.5 is modulated 497 

by the chemical state of the atmosphere as defined by the abundance in acids and free ammonia. We 498 

see that observed and modelled PM2.5 concentrations are in good agreement in the first half of 2020. 499 

The good agreement between modelled and observed concentrations can be also confirmed for most 500 

of the EMEP stations over Europe with high Pearson’s coefficients, low RMSE’s and low standard 501 

deviations in the Taylor plot that is demonstrated in Figure S 7. Furthermore, while secondary PM2.5 502 

constitute around 20-30% of the total PM2.5 (Dat et al., 2024; Bressi et al., 2013; Li et al., 2023), this 503 
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proportion increased during the European lockdowns despite that reactions of ammonia to form 504 

PM2.5 were decelerated (as seen by the declined loss in Figure 6a). 505 

Leung et al. (2020) reported that the abatement of nitrate in China is buffered not only by 506 

increased oxidant build-up, but also by an increase in free ammonia concentrations through sulfate 507 

concentration reduction, which favours ammonium nitrate formation. During COVID-19 restrictions 508 

in Europe, a significant decrease of 𝛮𝑂" (and 𝑆𝑂!) emissions occurred (Guevara et al., 2021) also 509 

confirmed by Doumbia et al. (2021). Thunis et al. (2021) showed that the latter might have increased 510 

the oxidative capacity of the atmosphere and, in turn, PM2.5 formation. This is the main reason why 511 

PM2.5 concentrations were not decreased during the COVID-19 lockdowns in many European cities 512 

(Varotsos et al., 2021; Shi et al., 2021), while the same has been reported elsewhere (Huang et al., 513 

2021; Le et al., 2020; Zhang et al., 2022).  514 

PM2.5 increased at areas less affected by primary emissions during the 2020 lockdown or at 515 

areas where the oxidative atmosphere favours secondary aerosol formation. For instance, reductions 516 

in PM2.5 were observed to be less pronounced than those in nitrogen dioxide in several regions (Patel 517 

et al., 2020; Shi and Brasseur, 2020), while PM2.5 even increased in others (Wang et al., 2020; Li et 518 

al., 2020). Li et al. (2020) indicated that while primary emissions dropped by 15–61% in China, daily 519 

average PM2.5 concentrations were still very high (15–79 μg m-3) showing that background and 520 

residual pollutants were important. In a similar manner, an extreme PM2.5 pollution event during the 521 

Chinese lockdown in Nanning that cause public concern was due to secondary aerosol formation (Mo 522 

et al., 2021).  523 

Here we aim at interpreting the mechanism below this disturbance in PM2.5 formation. As 524 

explained in Seinfeld and Pandis (2000) and represented in the LMDZ-INCA model (Hauglustaine 525 

et al., 2014), the neutralisation of atmospheric acids by ammonia in the atmosphere occurs through 526 

ammonium sulfate formation. Sulfate (𝑆𝑂$	(%)!. ) is also produced from sulfur dioxide (𝑆𝑂!	(;)) gas 527 

phase oxidation by the hydroxyl radical (𝑂𝐻). Note that the hydroxyl radical is mostly formed in the 528 

atmosphere when ultraviolet radiation (UV) photolyses ozone in the presence of water vapour, hence 529 

it is linked to humidity (Figure S 8). Sulfate production can also occur in the aqueous phase (Hoyle 530 

et al., 2016) through sulfur dioxide (𝑆𝑂!	(&<)) oxidation with ozone (𝑂#	(&<)) or hydrogen peroxide 531 

(𝐻!𝑂!	(&<)). In both phases, a higher humidity favors sulfate formation (Figure S 8). Ammonia also 532 

reacts with nitric acid (𝐻𝑁𝑂#	(;)) to form ammonium nitrate (𝑁𝑂#	(%). ) in an equilibrium reaction. In 533 

that case, as 𝑆𝑂! is strongly decreased due to the restrictions (Doumbia et al., 2021) and more free 534 

ammonia accumulates (see previous section), these higher gaseous ammonia levels increase the 535 

particulate nitrate formation. This mechanism has been highlighted in China as an unintended 536 

consequence of the of 𝛮𝑂" and 𝑆𝑂! regulation on the PM2.5 levels (Lachatre et al., 2019). 537 
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Conducting specific experiment in the frame of the CLOUD collaboration, Wang et al. (2022) 538 

reported that the 𝑁𝐻# - 𝐻!𝑆𝑂$ - 𝐻𝑁𝑂# system forms particles synergistically, at rates orders of 539 

magnitude faster than those the individual reactions of ammonia with sulfuric or nitric acid can give. 540 

In addition to this mechanism, as the fraction of the total inorganic nitrate, as particulate 𝑁𝑂#	(%).  541 

(instead of gaseous 𝐻𝑁𝑂#	(;)), increases, and as 𝑁𝑂" and 𝑆𝑂! decrease, while 𝑁𝐻# emissions remain 542 

high, a small increase in the particulate fraction greatly slows down deposition of total inorganic 543 

𝑁𝑂#	(%).  and hence drives particulate 𝑁𝑂#	(%).  to increase (Zhai et al., 2021). Thus, although 𝑁𝑂" 544 

emissions decreased during COVID-19 lockdowns in Europe, secondary PM2.5 stayed unchanged, 545 

because 𝑁𝑂" emissions reduction drives faster oxidation of 𝑁𝑂" and slower deposition of total 546 

inorganic 𝑁𝑂#	(%). . 547 

5 Conclusion 548 

We have examined the impact of lockdown measures in Europe due to COVID-19 on the 549 

atmospheric levels and emissions of ammonia using high-resolution satellite observations combined 550 

with a dispersion model and an inverse modelling algorithm. We find that ammonia emissions in 551 

2020 declined by -9.8% as compared to the same period in previous years (2016–2019). However, 552 

this decrease is insensitive to the meteorological conditions, as the 2020 ammonia emissions during 553 

the European lockdowns dropped outside of the deviation of the emissions in the reference period 554 

(2016–2019), while temperature, humidity and precipitation showed limited variability.  555 

While ammonia emissions generally increase in spring and late summer in Europe due to 556 

fertilisation, during the 2020 lockdowns, a clear delay in the evolution of the emissions of -77 kt was 557 

calculated, mostly in the central European countries, which suffered by the stringent restrictions. The 558 

evolution of ammonia emissions slightly rebounded after the restrictions were relaxed. 559 

During the COVID-19 lockdowns of 2020 over Europe the atmospheric levels of ammonia 560 

were drastically increased, as confirmed by ground-based and satellite observations. The reason for 561 

this is twofold; first, the European lockdown measures reduced atmospheric emissions and levels of 562 

𝑆𝑂! and 𝑁𝑂" and their acidic products (𝐻!𝑆𝑂$ and 𝐻𝑁𝑂#) slowing down binding and chemical 563 

removal of ammonia (lifetimes increased), and thus accumulating free ammonia; second, the prevail 564 

of agricultural activity during the lockdowns increased ammonia emissions (though at a lower rate). 565 

Surprisingly, despite all the travel, working and social restrictions that the European 566 

governments took to combat the outbreak of COVID-19, ambient pollution levels did not change as 567 

expected. PM2.5 levels were modulated by the chemical state of the atmosphere through secondary 568 

aerosol formation. Secondary PM2.5 rather increased during the European lockdowns despite that the 569 
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precursors of 𝐻!𝑆𝑂$ and 𝐻𝑁𝑂# declined. More sulfate was produced from 𝑆𝑂! and 𝑂𝐻 (gas phase) 570 

or 𝑂# (aqueous phase), while both atmospheric reactions were favoured by higher water vapour 571 

(humidity) during the lockdown period. The accumulated ammonia reacted with 𝐻!𝑆𝑂$ first 572 

producing sulfate. Then, as 𝑆𝑂! decreased during the European lockdowns and more free ammonia 573 

accumulated, the high excess gaseous ammonia reacted with 𝐻𝑁𝑂# shifting the equilibrium reaction 574 

towards conversion to particulate nitrate causing unintended increase in the PM2.5 levels. While 𝑁𝑂" 575 

emissions declined during the European lockdowns by -33%, this reduction drives faster oxidation of 576 

𝑁𝑂" and slower deposition of total inorganic nitrate causing high secondary PM2.5 levels. 577 

The present study gives a comprehensive analysis of the atmospheric 𝑁𝐻# - 𝐻!𝑆𝑂$ - 𝐻𝑁𝑂# 578 

system. It also proves the complicated relationship of secondary PM2.5 formation with the abundant 579 

atmospheric gases. The general drop of emissions during the first consistent lockdowns of 2020 in 580 

Europe offers a unique opportunity to study atmospheric chemistry under extreme conditions of fast 581 

pollutant emission drop equivalent to “The Clean Air Action” of the Chinese government. 582 
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FIGURE LEGENDS 1078 

 1079 

 1080 

Figure 1. Scatter plots of prior and posterior concentrations against independent observations 1081 
(observations that were not included in the inversion algorithm) from the EMEP network 1082 
(https://emep.int/mscw/, Figure S 1) from January to July 2020. Three statistical measures 1083 
(nRMSE, nMAE and RMSLE) were used to assess the performance of each inversion using three 1084 
different prior emission inventories for ammonia (EC6G4, VD and avgEENV). 1085 
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 1087 

Figure 2. (a) Total a priori emissions of ammonia over Europe for the inversion period (January – 1088 
June). The emissions correspond to avgEENV prior, and the total emitted amount is equal to 1061 kt. 1089 
(b) Total a posteriori emissions of ammonia over Europe for the inversion period (January – June) 1090 
for the reference period 2016 – 2019 (using avgEENV prior) that amount 1665 kt. (c) Total posterior 1091 
emissions of ammonia over Europe for January – June 2020 (1568 kt) using the avgEENV as the 1092 
prior. (d) Timeseries of weekly-average prior emissions of ammonia over Europe (January to June 1093 
2020) from avgEENV prior. (e) Timeseries of weekly-average posterior emissions of ammonia over 1094 
Europe for the reference years 2016–2019 (January to June) (yellow, green, cyan, magenta colors). 1095 
(f) Timeseries of weekly-average posterior emissions of ammonia with the associated uncertainties 1096 
over Europe in 2020 resulting from inversions using the avgEENV prior are plotted together with the 1097 
CrIS observations averaged over Europe (red line) and the mean ammonia emissions with the 1098 
calculated standard deviations for the reference period (2016–2019). The single top number -9.8% 1099 
shows percentage change in ammonia emissions during the 2020 lockdown as compared to the same 1100 
period in reference years, whereas two bottom ones show the corresponding changes in ammonia 1101 
emissions (i) during the 2020 lockdown as compared to the period before lockdown (+13.3%), and 1102 
(ii) the period after lockdown finished as compared to the lockdown period +18.3%), known as 1103 
rebound period. 1104 
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 1107 

Figure 3. (a) Absolute uncertainty from use of different surrounding grid area for each spatial element 1108 
of our inversion domain in the sensitivity tests; 2° to 4° grid-cells were considered resulting in a mean 1109 
relative uncertainty of 4%. (b) Absolute uncertainty from use of four different prior emission 1110 
estimates, namely EC6G4, VD, EGG and NE (see section 2.3). Here, a much larger uncertainty was 1111 
calculated, due to the use of tenfold different prior emission datasets. (c) Propagated absolute 1112 
uncertainty from the different sensitivity tests, and (d) relative uncertainty with respect to the posterior 1113 
emissions (Figure 2c). The average uncertainty in the inversion domain for the first half of 2020 was 1114 
estimated to be 11%. 1115 
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 1117 

Figure 4. Timeseries of weekly-average posterior emissions of ammonia with the calculated 1118 
uncertainties in different European countries in 2020 resulting from inversions using prior 1119 
information from avgEENV plotted together with the CrIS observations averaged over Europe (red 1120 
line) and mean emissions with the calculated standard deviations for the reference period (2016–1121 
2019). The single top numbers show the change in ammonia emissions during the 2020 lockdowns 1122 
(15 March – 30 April) as compared to the same period the years before (2016-2019), whereas the two 1123 
bottom ones show the respective changes in ammonia emissions during the 2020 lockdown as 1124 
compared to the period before the lockdown, and after lockdown finished compared to the lockdown 1125 
period (rebound period). 1126 
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 1129 

Figure 5. (a) Difference of posterior from prior emissions of ammonia during the European 1130 
lockdowns of 2020 (15 March – 30 April) using the avgEENV emissions as the prior. (b) Emission 1131 
anomaly relative to the 2020 lockdowns from the 2016-2020 period (15 March – 30 April). 1132 
Difference in posterior ammonia (c) during the 2020 lockdowns (15 March – 30 April, Lock) from 1133 
the period before (1 January – 14 March) and (d) after the 2020 lockdowns (1 May – 31 June, Reb) 1134 
from the period during the 2020 lockdowns (15 March – 30 April, Lock) compared with the 1135 
reference years (2016–2019). 1136 
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 1139 

 1140 

Figure 6. (a) Modelled lifetime (blue) and loss-rates (red) of atmospheric ammonia averaged over 1141 
Europe for January – June 2020. The lockdown period (15 March – 30 April) is shaded in yellow. 1142 
Right after COVID-19 restrictions were applied, loss-rates of ammonia (shown in red) were 1143 
disturbed due to reported decreases on 𝑆𝑂! and 𝑁𝑂" (Guevara et al., 2021; Doumbia et al., 2021), 1144 
precursors of sulfuric and nitric acids (with which ammonia reacts to form PM2.5) and the constant 1145 
accumulation of atmospheric ammonia. This had an effect on the lifetime of ammonia (plotted in 1146 
blue), which started increasing in Europe leading to further accumulation of ammonia. (b) 1147 
Observations of PM2.5 from the EMEP stations (78 stations) plotted against modelled PM2.5 1148 
concentrations, both averaged over Europe, from primary sources and secondary formation. It is 1149 
evident that right after lockdown (yellow shade), secondary PM2.5 formation maintained high 1150 
concentrations across Europe. 1151 
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