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Abstract  16 

The coronavirus outbreak in 2020 had devastating impact on human life, albeit a positive effect 17 

for the environment reducing emissions of primary aerosols and trace gases and improving air quality. 18 

In this paper, we present inverse modelling estimates of ammonia emissions during the European 19 

lockdowns of 2020 based on satellite observations. Ammonia has a strong seasonal cycle and mainly 20 

originates from agriculture. We further show how changes in ammonia levels over Europe, in 21 

conjunction with decreases in traffic-related atmospheric constituents modulated PM2.5. The key 22 

result of this study is a -9.8% decrease in emissions in the first half of 2020 compared to the same 23 

period in 2016–2019 attributed to restrictions related to the global pandemic. We further calculate the 24 

delay in the evolution of the emissions in 2020 before, during and after lockdowns, by an sophisticated 25 

comparison of the evolution of ammonia emissions during the same time periods for the reference 26 

years (2016–2019). Our analysis demonstrates a clear delay in the evolution of ammonia emissions 27 

of -77 kt, that was mainly observed in the countries that suffered the strictest travel, social and 28 

working measures. Despite the general drop in emissions during the first half of 2020 and the delay 29 

in the evolution of the emissions during the lockdown period, satellite and ground-based observations 30 

showed that European levels of ammonia increased. On one hand, this was due to the reduction of 31 

𝑆𝑂! and 𝑁𝑂" (precursors of the atmospheric acids with which ammonia reacts) that caused less 32 

binding and thus less chemical removal of ammonia (smaller loss – higher lifetime); on the other, the 33 

majority of the emissions persisted, because ammonia mainly originates from agriculture, a primary 34 

production sector that was not influenced by the lockdown restrictions, as practically agricultural 35 

activity never ceased. Despite the projected drop in various atmospheric aerosols and trace gases, 36 

PM2.5 levels stayed unchanged or even increased in Europe due to a number of reasons attributed to 37 

the complicated 𝑁𝐻# - 𝐻!𝑆𝑂$ - 𝐻𝑁𝑂# system. Higher water vapour during the European lockdowns 38 

favoured more sulfate production from 𝑆𝑂! and 𝑂𝐻 (gas phase) or 𝑂# (aqueous phase). Ammonia 39 

first neutralised sulfuric acid (due to higher atmospheric abundance) also producing sulfate. Then, 40 

the continuously accumulating free ammonia reacted with nitric acid shifting the equilibrium reaction 41 

towards particulate nitrate. In high free ammonia atmospheric conditions such as those in Europe 42 

during the 2020 lockdowns, a small reduction of 𝑁𝑂" levels drives faster oxidation toward nitrate and 43 

slower deposition of total inorganic nitrate causing high secondary PM2.5 levels. 44 

  45 
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1 Introduction 46 

Ammonia (NH3), the most abundant gas, has played a vital role in the evolution of human 47 

population through the Haber–Bosch process (Chen et al., 2019). However, today it is recognized to 48 

have significant negative influence, not only for the environment (Stevens et al., 2010), but also for 49 

human population (Cohen et al., 2017; Pope and Dockery, 2006) and the climate (De Vries et al., 2011). 50 

As an alkaline molecule, ammonia regulates the pH of clouds, while its excessive atmospheric 51 

deposition and terrestrial runoff affect natural reservoirs creating algae blooms and degrading water 52 

quality (Camargo and Alonso, 2006; Krupa, 2003). When emitted to the atmosphere, it reacts with 53 

the abundant sulfuric and nitric acids (Malm, 2004) forming sulfate, nitrate, and ammonium and 54 

contributing up to 50% to the total aerosol mass (Anderson et al., 2003). The latter has implications 55 

for human health (Gu et al., 2014) as aerosols penetrate the human respiratory system and accumulate 56 

in the lungs (Pope III et al., 2002) causing premature mortality (Lelieveld et al., 2015). Furthermore, 57 

through secondary aerosol formation (Pozzer et al., 2017), ammonia has a significant impact (i) on 58 

regional climate (Bellouin et al., 2011) causing visibility problems and contributing to haze effect, 59 

and (ii) on global climate directly by scattering incoming radiation (Henze et al., 2012) and indirectly 60 

as cloud condensation nuclei (Abbatt et al., 2006) altering the Earth’s radiative balance. 61 

The largest portion of atmospheric ammonia originates from the synthesis of nitrogen 62 

fertilizers, which are in high demand for agriculture (Erisman et al., 2007). The expansion of intensive 63 

agriculture during the 20th century has increased atmospheric ammonia above natural levels (Erisman 64 

et al., 2008), while the projected growth of the global population will likely create larger nutritional 65 

needs that are expected to further increase ammonia emissions during the 21st century (Pai et al., 66 

2021). Other sources of ammonia include emissions from livestock (Sutton et al., 2000a), industry, 67 

ammonia-rich watersheds (Sørensen et al., 2003), traffic (Kean et al., 2009), sewage (Reche et al., 68 

2012), humans (Sutton et al., 2000b), biomass and domestic combustion (Sutton et al., 2008; Fowler 69 

et al., 2004) and volcanic eruptions (Sutton et al., 2008). 70 

In the past years, atmospheric ammonia observations were mostly limited to ground-based 71 

measurements with relatively sparse monitoring networks. This resulted in large emission 72 

uncertainties in regions poorly covered by measurements (Heald et al., 2012). Today, satellite 73 

products are capable to record daily ammonia column concentrations providing useful information 74 

on its atmospheric abundance. Recently, Van Damme et al. (2021) analyzed Infrared Atmospheric 75 

Sounding Interferometer (IASI) retrievals and showed increased ammonia levels over most of Europe 76 

after 2015. Then, suddenly the COVID-19 outbreak came in 2020 creating a unique situation 77 

(Baekgaard et al., 2020), which affected all segments of life in a detrimental way (Chakraborty and 78 

Maity, 2020; Sohrabi et al., 2020). As a measure to inhibit further spread of the virus, authorities took 79 
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strict social, travel and working restrictions for months, which resulted in lower traffic-related 80 

emissions and improved air quality (Bauwens et al., 2020; Dutheil et al., 2020; Sicard et al., 2020). 81 

Illustrating the impact on emissions, Guevara et al. (2021) reported average emission reductions in 82 

Europe to be 33% for 𝑁𝑂", 8% for non-methane volatile organic compounds (NMVOCs), and 7% 83 

for SOx during the strictest lockdowns in 2020, while more than 85% of the total reduction is 84 

attributed to road transport. CO2 emissions were also decreased by 11% over Europe during the first 85 

lockdowns (Diffenbaugh et al., 2020), so as aerosols did; notably Black Carbon (BC) emissions 86 

dropped by 11% (Evangeliou et al., 2020) and Aerosol Optical Depth (AOD) decreased up to 20% 87 

over Central and Northern Europe (Acharya et al., 2021).  88 

While the COVID-19 lockdown impact on emissions for primary aerosols and trace gases has 89 

been studied extensively, how ammonia emissions were affected in Europe is unknown. The latter is 90 

very important and may have largely moderated the atmospheric levels of particulate matter (Giani 91 

et al., 2020; Guevara et al., 2021; Matthias et al., 2021), because of ammonia’s contribution to 92 

secondary PM2.5 (particulate matter) formation (Anderson et al., 2003). Here, we make use of 93 

satellite measurements of ammonia and a novel inversion algorithm to track how ammonia emissions 94 

changed before, during and after the European lockdowns in 2020. We examine the reasons behind 95 

the estimated changes and validate the results against ground-based observations from the EMEP 96 

measurement network (https://emep.int/mscw/, Figure S 1). Finally, we calculate the resulting impact 97 

of ammonia changes during the European lockdowns on the formation of PM2.5 using a chemistry 98 

transport model (CTM) and try to interpret the mechanisms governing these changes. 99 

2 Methods 100 

2.1 Cross-Track Infrared Sounder (CrIS) ammonia measurements 101 

The CrIS sensor onboard the NASA Suomi National Polar-orbiting Partnership provides 102 

atmospheric soundings at high spectral resolution (0.625 cm-1) (Shephard et al., 2015) resulting in 103 

improved vertical sensitivity for ammonia at the surface (Zavyalov et al., 2013). The CrIS fast 104 

physical algorithm (Shephard and Cady-Pereira, 2015) retrieves ammonia at 14 vertical levels using 105 

a physics-based optimal estimation retrieval, which also provides the vertical sensitivity (averaging 106 

kernels) and an estimate of the retrieval errors (error covariance matrices) for each measurement. 107 

Shephard et al. (2020) reports a total column random measurement error of 10–15%, with total 108 

random errors of ~30%. The individual profile random errors are 10–30%, while total profile random 109 

errors increase above 60% due to the limited vertical resolution (Shephard et al., 2020). Vertical 110 

sensitivity and error calculations are also important when using CrIS observations in satellite inverse 111 

modelling applications (Li et al., 2019; Cao et al., 2020) as a satellite observational operator can be 112 
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generated in a robust manner (see next sections). The detection limit of CrIS measurements has been 113 

calculated down to 0.3–0.5 ppbv (Shephard et al., 2020) and the product has been validated 114 

extensively against ground-based observations (Dammers et al., 2017; Kharol et al., 2018) showing 115 

small differences and high correlations. 116 

Daily CrIS ammonia satellite measurements (version 1.6.2) were gridded on 0.5°×0.5° covering 117 

all Europe (10°W–50°E, 25°N–75°N) from 1st January to 30th June 2020. Gridding was chosen to 118 

limit the large number of observations (around 10,000 per day per vertical level for 2550 retrievals 119 

January to June 2020), hence the need for a large number of source-receptor matrices (SRMs), which 120 

is computationally inefficient. Specifically, day and night-time observations from CrIS were averaged 121 

in each 0.5° resolution grid-cell daily from 1st January to 30th June 2020. This gridding method, 122 

although simple, it gives more robust results than classic interpolation methods and presents small 123 

standard deviations of the gridded values (see Tichý et al., 2023). Sitwell and Shephard (2021) 124 

showed that the averaging kernels of CrIS ammonia are significant only for the lowest six levels (the 125 

upper eight have no influence into the satellite observations) and therefore we have considered these 126 

six vertical levels (~1018-619 hPa). 127 

2.2 Source-receptor matrix (SRM) calculations 128 

SRMs were calculated for each 0.5°×0.5° grid-cell over Europe (10°W–50°E, 25°N–75°N) 129 

using the Lagrangian particle dispersion model FLEXPART version 10.4 (Pisso et al., 2019) adapted 130 

to model ammonia. The model releases computational particles that are tracked backward in time 131 

using hourly ERA5 (Hersbach et al., 2020) assimilated meteorological analyses from the European 132 

Centre for Medium-Range Weather Forecasts (ECMWF) with 137 vertical layers and a horizontal 133 

resolution of 0.5°×0.5°. FLEXPART simulates turbulence (Cassiani et al., 2014), unresolved 134 

mesoscale motions (Stohl et al., 2005) and convection (Forster et al., 2007). SRMs were calculated 135 

for 7 days backward in time, at temporal intervals that matched satellite measurements and at spatial 136 

resolution of 0.5°×0.5°. This 7-day backward tracking is sufficiently long to include almost all 137 

ammonia sources that contribute to surface concentrations at the receptors given a typical atmospheric 138 

lifetime of about a day (Evangeliou et al., 2021; Van Damme et al., 2018). 139 

The complicated heterogeneous chemistry of ammonia was modelled with the Eulerian model 140 

LMDz-OR-INCA, which couples the LMDz (Laboratoire de Météorologie Dynamique) General 141 

Circulation Model (GCM) (Hourdin et al., 2006) with the INCA (INteraction with Chemistry and 142 

Aerosols) model (Folberth et al., 2006; Hauglustaine et al., 2004) and with the land surface dynamical 143 

vegetation model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) 144 

(Krinner et al., 2005). The model has a horizontal resolution of 2.5°×1.3°, and 39 hybrid vertical 145 

levels extending to the stratosphere. It accounts for large-scale advection of tracers (Hourdin and 146 
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Armengaud, 1999), deep convection (Emanuel, 1991), while turbulent mixing in the planetary 147 

boundary layer (PBL) is based on a local second-order closure formalism. The model simulates 148 

atmospheric transport of natural and anthropogenic aerosols and accounts for emissions, transport 149 

(resolved and sub-grid scale), and dry and wet (in-cloud/below-cloud scavenging) deposition of 150 

chemical species and aerosols interactively. LMDz-OR-INCA includes a full chemical scheme for 151 

the ammonia cycle and nitrate particle formation, as well as a state-of-the-art 152 

CH4/NOx/CO/NMHC/O3 tropospheric photochemistry (Hauglustaine et al., 2014). The global 153 

transport of ammonia was simulated for 2020 with a month of spin-up by nudging the winds of the 154 

3-hourly ERA5 (Hersbach et al., 2020) with a relaxation time of 10 days (Hourdin et al., 2006).  155 

For the calculation of ammonia’s lifetime, LMDz-OR-INCA ran with traditional emissions for 156 

anthropogenic, biomass burning and oceanic emission sources from ECLIPSEv5 (Evaluating the 157 

CLimate and Air Quality ImPacts of Short-livEd Pollutants), GFED4 (Global Fire Emission Dataset) 158 

and GEIA (Global Emissions InitiAtive) (hereafter called “EGG”) (Bouwman et al., 1997; Giglio et 159 

al., 2013; Klimont et al., 2017). FLEXPART uses the exponential mass removal for radioactive 160 

species based on the e-folding lifetime (Pisso et al., 2019), which gives the time needed to reduce the 161 

species mass to 1/e contribution. We calculated the e-folding lifetime (Kristiansen et al., 2016; Croft 162 

et al., 2014) of ammonia from LMDz-OR-INCA, assuming that the loss occurs as a result of all 163 

processes affecting ammonia (chemical reactions, deposition) with a minimum time-step of 1800 s. 164 

Then we calculated the exponential loss of ammonia and the respective loss-rate constant 𝜅 (s-1). We 165 

point to Tichý et al. (2023) for more details on the methodology to avoid repetition. 166 

Ammonia has a complicated atmospheric chemistry and may react with sulfuric and nitric acid 167 

producing sulfate and nitrate. However, under certain atmospheric conditions, the equilibrium 168 

reaction with nitric acid can be shifted to the left producing free ammonia (Seinfeld and Pandis, 2000). 169 

Tichý et al. (2023) showed that production of free ammonia happened very rarely in continental 170 

Europe in 2013–2020 period. Nevertheless, we have previously published a full validation of the 171 

obtained CTM concentrations against all the available ground-based measurements of ammonia 172 

globally (Tichý et al., 2023), from the EMEP network (https://emep.int/mscw/) in Europe, EANET 173 

(East Asia acid deposition NETwork) in Southeastern Asia (https://www.eanet.asia/) and AMoN 174 

(Ammonia Monitoring Network in the US, AMoN-US; National Air Pollution Surveillance Program 175 

(NAPS) sites in Canada) in North America (http://nadp.slh.wisc.edu/data/AMoN/) . 176 

2.3 Inverse modelling of ammonia emissions  177 

The proposed inversion method is based on a comparison of the CrIS satellite observations with 178 

the model profile retrievals to estimate the spatiotemporal ammonia emissions. The comparison of 179 

remote-sense observations such as CrIS with model (or in-situ) profiles is not straightforward as in 180 
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the cases of ground-based observations. Here, we used the more rigorous approach of the “instrument 181 

operator” (see equation below), after interpolation of the model profile to the first six levels of the 182 

satellite product (Rodgers, 2000): 183 

ln(𝑣!"#) = ln(𝑣$) + 𝐴(ln(𝑣#!%") − ln(𝑣$))  Eq.  1 184 

where 𝑣!"# is the retrieved profile concentration vector, 𝑣$ is a priori profile concentration vector, 185 

𝑣#!%" is the true profile concentration vector, and 𝐴	 is the averaging kernel matrix in logarithmic 186 

space (for each 0.5°×0.5° resolution grid-cell). In our inversion setup, we directly compared the 187 

retrieved 𝑣!"# and the observed satellite column concentration 𝑣%&' that is given by CrIS. In our case, 188 

𝑣'()* is equal to the modelled concentration 𝑣&'( calculated from the SRMs and a prior emission 189 

inventory. The argument for this approach is that 𝑣!"#	is what the satellite would observe if 𝑣&'( was 190 

the true profile. This is a useful technique for evaluating if the retrieval algorithm is performing as 191 

designed, i.e., is it unbiased and the calculated root mean square error (RMSE) is within the expected 192 

variability. Further details about the algorithm and the setup can be found in Tichý et al. (2023). 193 

The goal of the inversion is to iteratively update prior emissions by minimizing the distance 194 

between 𝑣%&' and 𝑣(*' by correcting the emission flux 𝑥	 in the term 𝑣&'( = 𝑠𝑟𝑚)*"+𝑥$ (𝑠𝑟𝑚)*"+ 195 

denotes the FLEXPART SRMs), at each grid-cell and each of the six vertical levels that are important 196 

for CrIS (Sitwell et al., 2022): 197 

arg min
+!→+

4|𝑣-$# − 𝑣!"#|4
.

.  Eq.  2 198 

The inverse problem is constructed for each spatial element of the computational domain. 199 

Inspired by the construction of covariance matrix in Cao et al. (2020), we consider 4° surroundings 200 

(445 km), expressed by the index set 𝕊	, of which the column concentrations are considered due to 201 

computational effectivity. Note that we observed low sensitivity of resulting emission estimates to 202 

this choice. Then, we can formulate the inverse problem for each spatial element as:  203 

6𝑣-"
-$#;  𝑠/ ∈ 𝕊; = 6𝑣-"

!"#;  𝑠/ ∈ 𝕊;𝑞𝕊  Eq.  3 204 

where the left side of the equation is formed by the vector with aggregated CrIS observations, vectors 205 

𝑣-"
!"# form a block-diagonal matrix, and 𝑞𝕊 is an unknown vector with correction coefficients for each 206 

temporal element of the emission. The inverse problem in Eq. 3 was solved using the least squares 207 

with adaptive prior covariance (LS-APC) algorithm (Tichý et al., 2016). The algorithm is based on a 208 

Bayesian model which assumes that all coefficients are positive and that the abrupt changes in their 209 

neighbouring values are less probable. It is shown that the method is less sensible to manual tunning 210 

of regularization parameters (see sensitivity tests in Tichý et al. (2020)) than classical optimization 211 
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procedures, which is crucial for such a large dataset where each spatial element represents a separate 212 

inverse problem.  213 

A detailed description of the algorithm is given in Tichý et al. (2016). Here, we do not describe 214 

the algorithm again but explain a few modifications that were necessary for this study. By estimating 215 

the correction coefficients 𝑞𝕊 for each grid-cell of the spatial domain (10°W–50°E, 25°N–75°N), we 216 

can propagate the coefficients through Eq. 2 to update a priori emissions 𝑥& in the model 217 

concentration term  𝑣&'(. We follow Li et al. (2019) and Cao et al. (2020) to bound the ratio between 218 

the prior and the posterior emissions. The lower and upper bound of this ratio is set to 0.01 and 100, 219 

respectively, to omit the unrealistically low or high emissions. We consider these bounds large 220 

enough to allow for new emission sources to be exposed, not presented in the prior emissions.  221 

We evaluate the performance of the inversion by using three a priori emission datasets, (i) one 222 

based on Van Damme et al. (2018) calculations (Evangeliou et al., 2021) (hereafter denoted as “VD”), 223 

(ii) the ECLIPSEv6 inventory (Klimont, 2022; Klimont et al., 2017) (combined with biomass burning 224 

emissions from GFEDv4 (Giglio et al., 2013)) as the most recent one (denoted as “EC6G4”), and (iii) 225 

the average of four emission inventories for ammonia, except for these two mentioned before, “EGG” 226 

(see previous section), and “NE” calculated from IASI (Infrared Atmospheric Sounding 227 

Interferometer) observation (Evangeliou et al., 2021) (denoted as “avgEENV”). To account for the 228 

spatiotemporal impact of the lockdown on the European emissions, we corrected prior emission 229 

inventories of ammonia (EGG, EC6G4 and avgEENV) for 2020 using adjustment factors (AFs) 230 

adopted from Doumbia et al. (2021). The same was done for 𝑆𝑂! and 𝑁𝑂" (precursors of sulfuric and 231 

nitric acid in the atmosphere) in EGG that was used to calculate ammonia’s loss rates using LMDz-232 

OR-INCA model (see section 2.2). This dataset provides, for the January–August 2020 period, 233 

gridded AFs at a 0.1°×0.1° resolution on a daily resolution for transportation (road, air and ship 234 

traffic), power generation, industry and residential sectors. The quantification of AFs is based on 235 

activity data collected from different databases and previously published studies. These emission AFs 236 

have been applied to the CAMS global inventory, and the changes in emissions of the main pollutants 237 

have been assessed for different regions of the world in the first 6 months of 2020 (Doumbia et al., 238 

2021). 239 

Figure 1 shows the comparison of prior and posterior concentrations against independent 240 

observations (observations that were not used in the inversion algorithm) from the EMEP network 241 

(https://emep.int/mscw/, Figure S 1) for January–July 2020. Note that prior concentrations of 242 

ammonia result by coupling the FLEXPART SRMs with prior emissions (from VD, ECLIPSEv6 and 243 

avgEENV), while posterior concentrations by coupling the SRMs with the calculated posterior 244 

emissions. In Figure 1 it is evident that the most accurate reconstruction of surface concentrations 245 
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with respect to the EMEP observations was obtained using avgEENV as the a priori information, and 246 

therefore the results presented hereafter are based on this setup. We performed inversions for the first 247 

half of 2020 to assess the effect of lockdown measures on ammonia emissions, as well as the situation 248 

after lockdown measures were taken away (rebound period). To have a more generic view, we also 249 

performed inverse modelling calculations for the first half of each year between 2016–2019 (reference 250 

period). Then, we assess in impact of ammonia changes on aerosol formation (PM2.5), by feeding 251 

the posterior emissions to the LMDz-OR-INCA model and calculating the production of PM2.5. 252 

2.4 Statistical tests 253 

To evaluate the comparisons between modelled and observed concentrations of ammonia, we 254 

used the root mean squared logarithmic error (RMSLE) defined as follows: 255 

𝑅𝑀𝑆𝐸 = /∑ (-!.-")#

0
0
123  and 𝑅𝑀𝑆𝐿𝐸 = /3

0
∑ (log 𝐶4 − log 𝐶5)!0
123   Eq.  4 256 

where 𝐶4 and 𝐶5 are the modelled and measured ammonia concentrations and 𝑁 is the total number 257 

of observations. The commonly used squared Pearson correlation coefficient (𝑟) was also used as a 258 

measure of linear correlation between two sets of data defined as: 259 

𝑟 = ∑(𝐶𝑚−𝐶𝑚####)(𝐶𝑜−𝐶𝑜$ )

%(𝐶𝑚−𝐶𝑚####)
1(𝐶𝑜−𝐶𝑜$ )

1
  Eq.  5 260 

where the distance of modelled and measured ammonia concentrations from the mean (𝐶&>>>> and 𝐶'>>>) is 261 

computed. Finally, the standard deviation was adopted as a measure of the dispersion of modelled 262 

ammonia from the observations, which is the true value: 263 

𝜎 = $(𝐶𝑚&𝐶𝑜)1

(
  Eq.  6 264 

The mean fractional bias (𝑀𝐹𝐵) was selected as a symmetric performance indicator that gives equal 265 

weights to under- or over-estimated concentrations (minimum to maximum values range from -200% 266 

to 200%). It was used in the independent validation (validation against measurements that were 267 

excluded from the inversion, see section 3.2) of the posterior concentrations of ammonia during the 268 

European lockdowns of 2020 and is defined as: 269 

𝑀𝐹𝐵 = 3
0
∑ (-!.-")&
'()
∑ (*!+*"

# )&
'()

  Eq.  7 270 

For the same reason, the mean absolute error was computed normalized (𝑛𝑀𝐴𝐸) over the average of 271 

all the actual values (observations here), which is a widely used simple measure of error: 272 

𝑀𝐴𝐸 = ∑ |-!.-"|&
'()
∑ -"&
'()

  Eq.  8 273 
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3 Results 274 

3.1 Emission changes of ammonia due to COVID-19 restrictions over Europe 275 

The reason behind the selected three priors used in the inversion (EGG, EC6G4 and avgEENV) 276 

of ammonia is trifold; (i) they are based on the most recent estimates, (ii) they present different spatial 277 

distribution, and (iii) they were derived using different methodologies. More specifically, EC6G4 is 278 

based on the emission model GAINS (Klimont et al., 2017), while VD uses satellite observations 279 

combined with a box model (Evangeliou et al., 2021). As mentioned in the previous section, it is seen 280 

that the most accurate representation of surface model concentrations was achieved using the 281 

avgEENV a priori, which forces posterior concentrations closer to 1×1 line, whereas the obtained 282 

statistics are significantly better than using other priors (Figure 1). Therefore, the results presented 283 

below have all been obtained using avgEENV as the prior emission dataset keeping results using the 284 

other two priors in the Supplements. 285 

The total prior emissions of ammonia over Europe for the inversion period (January – June), 286 

the posterior emissions for years 2016–2019 and the posterior emissions during the lockdown year 287 

2020 (January – June) are plotted in Figure 2 (the results from inversions using EC6G4 and VD prior 288 

emissions are illustrated in Figure S 2 and S 3). The total prior ammonia emitted between January 289 

and June in Europe were equal to 1061 kt (Figure 2a). To check whether calculated changes in 2020 290 

were due to meteorology and avoid misinterpretation of our findings, inverse calculations of ammonia 291 

were performed for the reference years 2016–2019 (January–June) using respective observations 292 

from CrIS and exactly the same set-up as the one described in section 2 (Methods). The total posterior 293 

emissions of ammonia over Europe for the reference period (2016 – 2019) were estimated to be 1665 294 

kt or 57% higher than the prior (Figure 2b). Finally, for January–June 2020 the derived emission 295 

estimates were equal to 1568 kt (Figure 2c). This is 48% higher than the prior and 6% lower than the 296 

posterior emissions of January–June 2016–2019.  297 

The weekly-average evolution of prior and posterior emissions of ammonia over Europe 298 

(January to June) for 2016–2019 show a similar pattern with small year-to-year variability (Figure 299 

2d,e), thus insignificant impact from the prevailing meteorology. The weekly posterior ammonia 300 

emissions over Europe changed during the lockdown period (2020) as compared to the reference 301 

years (Figure 2f). Satellites and national monitoring measurements of ammonia show that emissions 302 

peak in spring (March) and late-summer in Europe (Van Damme et al., 2022) corresponding to the 303 

two main fertilization periods (Paulot et al., 2014). Ammonia abundances are however high 304 

throughout the entire spring–summer period due to agricultural activities and temperature dependent 305 

volatilization of ammonia (Sutton et al., 2013). Ammonia posterior emissions in 2020 declined by -306 
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9.8% as compared to the same period over the previous four years (2016–2019, Figure 2f). 307 

Interestingly, the posterior ammonia emissions in the first half of 2020 were insensitive to the 308 

meteorological conditions. Although the obtained posterior emissions for the reference period are 309 

very similar with respect to annual variance (grey shade in Figure 2f), levels and trend (dashed grey 310 

line), emissions during lockdown period in 2020 dropped substantially, outside of the variance of 311 

emissions calculated for the reference period (bottom blue line, Figure 2f). 312 

3.2 Validation of posterior ammonia against independent measurements 313 

The optimized emissions of ammonia must be validated against independent observations, 314 

because the inversion algorithm has been designed to reduce the model–observation mismatches. 315 

Here, the reduction of the posterior concentration differences from the observations from CrIS is 316 

determined by the weighting that is given to the observations and, hence, such comparison depends 317 

on this weighting (dependent observations). Therefore, the ideal comparison of any posterior 318 

emission resulting from top-down methods would be against measurements that were not included in 319 

the inversion algorithm (independent observations). Here, we used ground-based observations of 320 

ammonia from all EMEP sites (https://emep.int/mscw/) for the period of our study as an independent 321 

dataset for validation. All stations are illustrated in Figure S 1. 322 

As we mentioned in section 2.3, we evaluated the efficiency of the inversion and the most 323 

effective a priori dataset for our purpose by assessing the match between the calculated posterior 324 

concentrations against all the available observations from EMEP (N=3957) for the study period 325 

(Figure 1). More specifically, after it became evident that the most accurate results were obtained 326 

with avgEENV as the prior (relationship closer to unity against measured ammonia), we saw an 327 

immediate improvement in the statistical tests used (nRMSE, nMAE and RMSLE) when using the 328 

posterior emissions to model ammonia in FLEXPART during the first half of 2020 (Figure 1 – right 329 

panel). nMAE decreased from 0.80 using the prior emissions to 0.76 using the posterior ones, 330 

accordingly nRMSE of the posterior concentrations dropped to 0.073 as compared to -0.069 using 331 

the prior emissions, while the RMSLE decreased from 0.60 using prior emissions to 0.55 using the 332 

optimized a posteriori emissions. To get a better insight on how modelled concentrations improved 333 

towards ammonia observations, eight random EMEP stations were selected to show timeseries of 334 

prior and posterior concentrations in the first half of 2020 (Figure S 4). Although large peaks are not 335 

reproduced, all statistics were improved using the posterior emissions of ammonia. 336 

3.3 Country-level changes due to COVID-19 restrictions 337 

To document the emission changes of ammonia over the different European countries before, 338 

during and after the 2020 lockdowns, we report the weekly evolution of the emissions for 16 countries 339 

individually (Figure 3). Specifically, weekly emissions were averaged for each country based on 340 
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respective country definitions that are shown in Figure S 5. Like in the previous section, the country-341 

based emissions were calculated for the avgEENV prior. 342 

Most countries show that ammonia emissions declined or at least stayed less affected by the 343 

2020 lockdowns, as compared to the same period during the reference years (2016–2019). Countries 344 

with substantial decreases in the 2020 lockdown emissions were The Netherlands (-16%) and 345 

Belgium (-23%), both countries with important agricultural activity, as well as Denmark (-20%), 346 

Ireland (-18%) and Ukraine (-18%). Smaller changes were recorded in Spain (-2.1%), Czechia (-347 

4.0%) and Italy (-6.0%) despite the intensive lockdown measures. This practically shows that 348 

agricultural activity never stopped, even in periods of extraordinary austerity, as agriculture is the last 349 

remaining primary production sector, necessary for human life. 350 

We note that the largest emissions of ammonia in European countries were seen around 351 

March–April (weeks 8–16) and in summer. These coincide with the fertilization periods mentioned 352 

previously (Paulot et al., 2014) that control the seasonality of ammonia’s emissions. In most European 353 

countries, the time of the year when fertilizers can be applied is tightly regulated (Ge et al., 2020). In 354 

the Netherlands for instance, the largest ammonia contributor in Europe, application of nitrogen 355 

fertilizer is only allowed from February to mid-September. This produces two peak periods, in March 356 

and late May (Figure 3). Manure application also follows stringent regulations and is only allowed 357 

in the same periods depending on the type of manure (slurry or solid) and the type of land (grassland 358 

or arable land) (Van Damme et al., 2022). In Belgium, nitrogen fertilizers are only allowed between 359 

mid-February and end of August (Van Damme et al., 2022), therefore the peaks in early March and 360 

summer (Figure 3). Accordingly, in Germany, it is also restricted in winter months and depends on 361 

fertilizer type and land type (Kuhn, 2017), while restrictions during the same months are applied in 362 

the US (Paulot et al., 2014). 363 

To understand and position where ammonia emissions changed during the European 364 

lockdowns of 2020, we plot the difference of the posterior emissions of ammonia during the lockdown 365 

period (15 March – 30 April) for the same period in Figure 4a. We calculate higher emissions of 366 

ammonia during the lockdown of +115 kt as compared to the prior emissions. The largest differences 367 

can be seen in Spain, Romania and North Italy. Note that inversion algorithms aim at reducing the 368 

mismatches between modelled concentrations and observations (in our case, from CrIS satellite 369 

measurements) by correcting emissions. This means that different posterior emissions are most likely, 370 

due to errors in the prior emissions and do not indicate any impact from the restriction measures.  371 

Therefore, we demonstrate the impact of the COVID-19 lockdowns over Europe in 2020, by 372 

calculating the emission anomaly for the lockdown period from 2016–2020 (same period as the 2020 373 
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lockdowns, namely 15 March – 30 April) in Figure 4b. Emissions during the 2020 lockdowns 374 

dropped by -29 kt with respect to the same period in 2016 – 2020 showing the impact of the COVID-375 

19 restrictions. Maximum decreases were seen in The Netherlands and Belgium, both countries with 376 

important agricultural activity (Figure 4b) that also suffered heavily from the COVID-19 outbreak 377 

(Bendz and Aaberge, 2020) and took strict lockdown measures. Other areas where changes were 378 

calculated were Northern Italy, Switzerland and Austria, while Scandinavian countries were not 379 

affected. This agrees well with the state of the epidemic in these countries in spring 2020. While 380 

North Italy was the first country outside China to suffer high mortality rates and, thus, dramatic social 381 

restrictions in spring 2020, Norway, Sweden, Denmark and Finland showed total infected cases far 382 

below 1% per capita, mostly suffering higher rates later in 2020 (Gordon et al., 2021).  383 

It is well-known that ammonia emissions increase in spring (March) and late-summer in 384 

Europe (Van Damme et al., 2022) corresponding to the two main fertilization periods (Paulot et al., 385 

2014) and that atmospheric abundances are high throughout the entire spring–summer period due to 386 

agricultural activities and temperature dependent volatilization (Sutton et al., 2013). Therefore, 387 

calculating the difference in the calculated emissions during the lockdown from the period before or 388 

after is practically meaningless and cannot show the lockdown impact since agricultural activity did 389 

not stop in spring 2020. For this reason we quantify the delay in the evolution of the emissions by 390 

calculating emission differences in the lockdowns from the period before (Lock – Prelock) for the 391 

lockdown year 2020 and emission differences (Lock – Prelock) for the reference years (2016 – 2019); 392 

Then, we plot their spatial differences in Figure 4c. Accordingly, we do the same calculation for 393 

differences in the rebound period (the period after the restrictions were relaxed) from the lockdown 394 

period (Rebound – Lock) in 2020 and compare them with Rebound – Lock for the reference years 395 

2016 – 2019 (Figure 4d). We observe a clear delay in the evolution of ammonia emissions in 2020 396 

of -77 kt (Figure 4c), while only Scandinavian countries show positive changes. Hot-spots of 397 

negative evolution were seen in central Europe, mainly in the triptych of Northern Italy, Switzerland 398 

and Austria, for the reasons discussed in the previous paragraph. In Poland, the Ministry of Health 399 

enforced self-isolation measures and restrictions on civic freedoms, including access to public spaces, 400 

to contain the transmission of the disease. These measures significantly affected the daily lives of 401 

Polish citizens (Szczepańska and Pietrzyka, 2021) and might be the reason for the decreased evolution 402 

of ammonia emissions (Figure 4c). After the measures were relaxed, the evolution of the emissions 403 

rebounded slightly with respect to the reference period (2016 – 2019) as shown in Figure 4d. The 404 

changes in ammonia during the rebound period were concentrated in countries that were affected 405 

most severely from the lockdown restrictions, namely Northern Italy, Switzerland, Austria and 406 

Poland. The same has been reported for several other pollutant emissions (Davis et al., 2022; Jackson 407 

et al., 2022). 408 
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3.4 Uncertainty of the posterior emissions 409 

As described in section 2.3 in more detail, we considered 4° surroundings of each spatial 410 

element of our inversion domain from which the CrIS observations were used in the inverse problem. 411 

This means that 45 spatial elements in CrIS space were used, with six vertical levels each, for each 412 

of the 26 temporal emission elements. To calculate the associated uncertainty of the posterior 413 

estimates, we tested two sources of uncertainty: (i) how different surroundings for each spatial 414 

element affect posterior emissions of ammonia and (ii) how the use of different prior emissions affects 415 

posterior ammonia. We organized a series of sensitivity tests using surroundings covering 2°, 3° and 416 

4° from each grid-cell. This selection is realistic as it was shown previously in Cao et al. (2020) for 417 

the construction of prior emission error covariance matrix. For the second source of uncertainty, we 418 

performed the same inversion using not only EC6G4 and VD priors, but also adding results using two 419 

more datasets for ammonia (in total four), which have 10 times higher emissions, namely EGG and 420 

NE (see section 2.3). 421 

The calculated absolute uncertainties are depicted in Figure 5a–c together with the relative 422 

uncertainty (Figure 5d) with respect to the posterior emissions of ammonia (posterior ammonia is 423 

shown in Figure 2c). The first source of uncertainty (different surroundings) slightly affects the 424 

resulting posterior emissions of ammonia (Figure 5a) causing an average relative uncertainty below 425 

4% in the European emissions. The second source of uncertainty (use of different priors) causes much 426 

larger bias as shown in Figure 5b (average relative uncertainty 35%). The reason for this is obviously 427 

the large variation of the EGG (Bouwman et al., 1997; Giglio et al., 2013; Klimont et al., 2017) and 428 

NE (Evangeliou et al., 2021) prior datasets that have total emissions in the first half of 2020 of 63.5 429 

and 53.3 Tg, respectively, in contrast to only 6.2 and 5.7 Tg for EC6G4 and VD. Hence, the results 430 

presented here are sensitive to the use of prior emission dataset. The modelled concentrations (that 431 

replaces the hypothetical true column concentration in Eq. 1) is calculated by the SRMs and the prior 432 

emission and, therefore, play a key role in the comparison of the CrIS value (𝑣-$#) and retrieved value 433 

(𝑣!"#) (see Eq. 2). Also, the modelled concentrations stand as the argument of the natural logarithm 434 

weighted by the averaging kernel in logarithmic space. The linearization of this operator as suggested 435 

by Sitwell and Shephard (2021) may reduce the dependency on the prior emission term, however, 436 

this is beyond the scope of this study. Overall, the propagated (absolute and relative) uncertainties of 437 

the posterior emissions are shown in Figure 5c and d and are equal to 11% over Europe on average 438 

(Figure 5). The latter shows that our calculations are robust on one hand, but dependent on the use 439 

of a priori information on the other. 440 
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4 Discussion 441 

4.1 Rising ammonia concentrations during the European lockdowns 442 

One issue that has been overlooked is the concentrations of ammonia before, during and after 443 

the 2020 lockdowns in Europe. Despite the delay in the emissions during the lockdown period in 444 

2020, the measured atmospheric levels of ammonia recorded in CrIS showed an increase during the 445 

lockdowns and declined after the restrictions were relaxed in almost all European countries (Figure 446 

3). The latter was reported in several studies analysing ground-based measurements. For example, 447 

Lovarelli et al. (2021) concluded that contrary to other air pollutants, ammonia was not reduced when 448 

the COVID-19 restrictions were introduced in North Italy, as agricultural activity, which is the main 449 

emissive source of this pollutant, was not interrupted. They further report that urban and rural 450 

ammonia was the highest compared to previous years during the same months for which the strictest 451 

lockdowns took place (i.e., spring 2020). Rennie et al. (2020) reported a slight decrease of ammonia 452 

in the UK, while Xu et al. (2022) observed increased of ambient ammonia during the lockdowns in 453 

China. Accordingly, Viatte et al. (2021) found enhanced ammonia during lockdown in Paris. Finally, 454 

in a recent study, Kuttippurath et al. (2023) reported increases in ammonia during lockdowns almost 455 

everywhere, with maxima in Western Europe, Eastern China, the Indian subcontinent and the Eastern 456 

USA. Since atmospheric ammonia has been increasing globally due to various anthropogenic 457 

activities, he European lockdowns in 2020 offer a unique opportunity to expose ammonia’s sources 458 

and address the importance of secondary PM2.5 formation. 459 

Figure 6a depicts the modelled atmospheric lifetime of ammonia and its dependence from the 460 

calculated loss-rates over Europe for the first half of 2020. Ammonia is a particularly interesting 461 

substance due to its affinity to react with atmospheric acids producing secondary aerosols. In most 462 

cases, it is depleted by sulfuric and nitric acids. In principle, the neutralisation of sulfuric acid is faster 463 

and sulfuric acid more abundant in the atmosphere than nitric acid (Evangeliou et al., 2021), so that 464 

ammonia is depleted directly (almost instantaneous in models, with almost 30 minutes timesteps). 465 

Results from laboratory and field studies (Weber et al., 1999; Schobesberger et al., 2015) suggest that 466 

ammonia actually promotes the nucleation of sulfuric acid in the atmosphere. This effect is not well 467 

understood and results in rates of particle nucleation in the atmosphere that appear to be much faster 468 

than expected based on the theory. After the reaction with sulfuric acid, free ammonia can further 469 

react with nitric acid to form ammonium nitrate. However, in certain atmospheric conditions (e.g., 470 

high humidity, aqueous particles), the equilibrium vapor pressure of ammonia with nitric acid 471 

increases shifting the reaction with nitric acid towards production of free ammonia (Seinfeld and 472 

Pandis, 2000). However, production of ammonia is a rare event in continental Europe (see details in 473 

Tichý et al., 2023). 474 
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During the lockdown period over Europe, transport and industrial activities mostly stopped, 475 

and consequently the related emissions also decreased. This had an immediate effect on 𝑆𝑂! and 𝑁𝑂" 476 

(Guevara et al., 2021; Doumbia et al., 2021). Reductions of 𝑆𝑂! and 𝑁𝑂" caused less production of 477 

atmospheric sulfuric and nitric acids. The latter had a rapid twofold effect on the lifetime of ammonia: 478 

(i) Less available atmospheric acids needed less ammonia for neutralisation towards sulfate (mainly) 479 

and nitrate aerosols and therefore the loss-rates declined (Figure 6a) leading to accumulation of 480 

ammonia in its free form; (ii) ammonia originates mainly from agriculture and livestock, and these 481 

activities did not stop during the European lockdowns increasing the associated emissions (see Figure 482 

2, though with a lower trend than previous years as discussed in section 3.3). The rising levels of 483 

ammonia during the COVID-19 lockdowns in Europe have been confirmed by the CrIS observations 484 

(Figure 2 and 3) and have been also reported elsewhere (Kuttippurath et al., 2023; Viatte et al., 2021; 485 

Xu et al., 2022; Lovarelli et al., 2021).  486 

4.2 Disturbance in the secondary formation of PM2.5  487 

The response of the restriction measures on PM2.5 mass concentrations suggests a 488 

relationship that is more complex than expected and beyond road traffic intensity, at least for Europe. 489 

It has been reported that there was no systematic decrease in PM2.5 concentrations during COVID-490 

19 lockdowns in USA (Archer et al., 2020; Bekbulat et al., 2021) or even in Chinese cities (Mo et al., 491 

2021), where primary sources are abundant and stringent lockdown measures decreased PM levels 492 

(Zhang et al., 2023). In a recent study focusing on PM2.5 measurements over 30 urban and regional 493 

background European sites, Putaud et al. (2023) showed that the implementation of the lockdown 494 

measures resulted in minor increases in PM2.5 mass concentration in Europe of +5±33%. The latter 495 

aligns well with several regional studies focusing on the impact of lockdowns to regional pollution 496 

(Querol et al., 2021; Shi et al., 2021; Viatte et al., 2021; Thunis et al., 2021; Putaud et al., 2021). 497 

Figure 6b demonstrates observed PM2.5 from the EMEP stations (78 sites) in comparison 498 

with modelled PM2.5 concentrations, both averaged for all sites. In modelled PM2.5 mass 499 

concentrations, we have separated primary and secondary PM2.5, as secondary PM2.5 is modulated 500 

by the chemical state of the atmosphere as defined by the abundance in acids and free ammonia. We 501 

see that observed and modelled PM2.5 concentrations are in good agreement in the first half of 2020. 502 

The good agreement between modelled and observed concentrations can be also confirmed for most 503 

of the EMEP stations over Europe with high Pearson’s coefficients, low RMSE’s and low standard 504 

deviations in the Taylor plot that is demonstrated in Figure S 6. Furthermore, while secondary PM2.5 505 

constitute around 20-30% of the total PM2.5 (Dat et al., 2024; Bressi et al., 2013; Li et al., 2023), this 506 

proportion increased during the European lockdowns despite that reactions of ammonia to form 507 

PM2.5 were decelerated (as seen by the declined loss in Figure 6a). 508 
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Leung et al. (2020) reported that the abatement of nitrate in China is buffered not only by 509 

increased oxidant build-up, but also by sulfate to nitrate conversion and liberation of free ammonia 510 

through sulfate concentration reduction, which favours nitrate formation. During COVID-19 511 

restrictions in Europe, a significant decrease of 𝛮𝑂" (and 𝑆𝑂!) emissions occurred (Guevara et al., 512 

2021) also confirmed by Doumbia et al. (2021). Thunis et al. (2021) showed that the latter might have 513 

increased the oxidative capacity of the atmosphere and, in turn, PM2.5 formation. This is the main 514 

reason why PM2.5 concentrations were not decreased during the COVID-19 lockdowns in many 515 

European cities (Varotsos et al., 2021; Shi et al., 2021), while the same has been reported elsewhere 516 

(Huang et al., 2021; Le et al., 2020; Zhang et al., 2022).  517 

PM2.5 increased at areas less affected by primary emissions during the 2020 lockdowns or at 518 

areas where the oxidative atmosphere favours secondary aerosol formation. For instance, reductions 519 

in PM2.5 were observed to be less pronounced than those in nitrogen dioxide in several regions (Patel 520 

et al., 2020; Shi and Brasseur, 2020), while PM2.5 even increased in others (Wang et al., 2020; Li et 521 

al., 2020). Li et al. (2020) indicated that while primary emissions dropped by 15–61% in China, daily 522 

average PM2.5 concentrations were still very high (15–79 μg m-3) showing that background and 523 

residual pollutants were important. In a similar manner, an extreme PM2.5 pollution event during the 524 

Chinese lockdown in Nanning that cause public concern was due to secondary aerosol formation (Mo 525 

et al., 2021).  526 

Here we aim at interpreting the mechanism below this disturbance in PM2.5 formation. As 527 

explained in Seinfeld and Pandis (2000), the neutralisation of atmospheric acids by ammonia in the 528 

atmosphere occurs directly to ammonium sulfate ((𝑁𝐻$)!𝑆𝑂$(%)) in the gas phase or to ammonium 529 

(𝑁𝐻$	(&;)< ) and sulfate (𝑆𝑂$	(&;)!. ) with an intermediate product (ammonium, 𝑁𝐻$	(&;)< , and bisulfate, 530 

𝐻𝑆𝑂$	(&;). ) in the aqueous phase. Sulfate (𝑆𝑂$	(%)!. ) can be also produced in the gas phase from sulfur 531 

dioxide (𝑆𝑂!	(=)) with hydroxyl radical (𝑂𝐻) as the oxidant. Note that hydroxyl radical is formed in 532 

the atmosphere when ultraviolet light (UV) from the sun strikes ozone in the presence of water 533 

vapour, hence it is linked to humidity (Figure S 7). Sulfate production can also occur in the aqueous 534 

phase (Hoyle et al., 2016) through sulfur dioxide (𝑆𝑂!	(&;)) oxidation with ozone (𝑂#	(&;)) or 535 

hydrogen peroxide (𝐻!𝑂!	(&;)). In both phases, higher humidity favours sulfate formation (Figure S 536 

7). Ammonia also reacts with nitric acid (𝐻𝑁𝑂#	(=)) to form nitrate (𝑁𝑂#	(%). ) in an equilibrium 537 

reaction that is rare. In that case, as 𝑆𝑂! is strongly decreased due to the restrictions (Doumbia et al., 538 

2021) and more free ammonia accumulates (see previous section), these higher gaseous ammonia 539 

levels shift the equilibrium reaction towards a larger conversion of gaseous nitric acid into particulate 540 

nitrate. This mechanism has been highlighted in China as an unintended consequence of the of 𝛮𝑂" 541 

and 𝑆𝑂! regulation on the PM2.5 levels (Lachatre et al., 2019). Wang et al. (2022) recently reported 542 
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that 𝑁𝐻# - 𝐻!𝑆𝑂$ - 𝐻𝑁𝑂# form particles synergistically, at rates orders of magnitude faster than those 543 

from any two of the three components and that the reaction rates are controlled by the availability of 544 

𝑁𝐻#. In addition to this mechanism, as the fraction of total inorganic nitrate, as particulate 𝑁𝑂#	(%).  545 

instead of gaseous 𝐻𝑁𝑂#	(=), increases, as emissions of 𝑁𝑂" and 𝑆𝑂! decrease, while 𝑁𝐻# emissions 546 

remain high, a small increase in the particulate fraction greatly slows down deposition of total 547 

inorganic 𝑁𝑂#	(%).  and hence drives the particulate 𝑁𝑂#	(%).  increase (Zhai et al., 2021). Thus, although 548 

𝑁𝑂" emissions decreased during COVID-19 lockdowns in Europe, secondary PM2.5 stayed 549 

unchanged, because 𝑁𝑂" emissions reduction drives faster oxidation of 𝑁𝑂" and slower deposition 550 

of total inorganic 𝑁𝑂#	(%). . 551 

5 Conclusion 552 

We have examined the impact of lockdown measures in Europe due to COVID-19 on the 553 

atmospheric levels and emissions of ammonia using high-resolution satellite observations combined 554 

with a dispersion model and an inverse modelling algorithm. We find that ammonia emissions in 555 

2020 declined by -9.8% as compared to the same period in previous years (2016–2019). However, 556 

this decrease appears to be insensitive to the meteorological conditions, as ammonia emissions in the 557 

2020 lockdowns dropped under the variance of emissions calculated for the reference period (2016–558 

2019). Ammonia emissions increase in spring and late summer in Europe because of agriculture and 559 

temperature dependent volatilization. Though during the lockdowns of 2020, a clear delay in the 560 

evolution of ammonia emissions of -77 kt was found, mostly in the central European countries, which 561 

suffered by the stringent restrictions. The evolution of ammonia emissions slightly rebounded after 562 

the restrictions were relaxed. 563 

During the COVID-19 lockdowns of 2020 the atmospheric levels of ammonia were drastically 564 

increased, as confirmed by ground-based and satellite observations over Europe. The reason for this 565 

is twofold; first, the European lockdown measures decreased atmospheric emissions and levels of 566 

𝑆𝑂! and 𝑁𝑂" and their acidic products (𝐻!𝑆𝑂$ and 𝐻𝑁𝑂#) slowing down binding and chemical 567 

removal of ammonia (lifetimes increased), and thus accumulating free ammonia; second, agricultural 568 

activity never ceased constantly increasing ammonia emissions during the lockdowns, though at a 569 

lower rate. 570 

Surprisingly, despite all the travel, working and social restrictions that the European 571 

governments took to combat the outbreak of COVID-19, ambient pollution levels did not increase as 572 

expected. PM2.5 levels were modulated by the chemical state of the atmosphere through secondary 573 

aerosol formation. Secondary PM2.5 increased during the European lockdowns despite that the 574 
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precursors of 𝐻!𝑆𝑂$ and 𝐻𝑁𝑂# declined. More sulfate was produced from 𝑆𝑂! and 𝑂𝐻 (gas phase) 575 

or 𝑂# (aqueous phase), while both atmospheric reactions were favoured by higher water vapour 576 

content (humidity) during the lockdown period. The accumulated ammonia neutralised the more 577 

abundant 𝐻!𝑆𝑂$ first producing sulfate. Then, as 𝑆𝑂! decreased during the European lockdowns and 578 

more free ammonia accumulated, the high excess gaseous ammonia neutralised 𝐻𝑁𝑂# shifting the 579 

equilibrium reaction towards conversion to particulate nitrate causing unintended increase in the 580 

PM2.5 levels. While 𝑁𝑂" emissions declined during the European lockdowns by -33%, this reduction 581 

drives faster oxidation of 𝑁𝑂" and slower deposition of total inorganic nitrate causing high secondary 582 

PM2.5 levels. 583 

The present study gives a comprehensive analysis of the atmospheric system 𝑁𝐻# - 𝐻!𝑆𝑂$ - 584 

𝐻𝑁𝑂#. It also proves the complicated relationship of secondary PM2.5 formation with the abundant 585 

atmospheric gases. The general drop of emissions during the first consistent lockdowns of 2020 is 586 

Europe offers a unique opportunity to study their atmospheric chemistry under extreme conditions of 587 

fast pollutant emission drop equivalent to “The Clean Air Action” of the Chinese government. 588 
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FIGURE LEGENDS 1060 

 1061 

 1062 

Figure 1. Scatter plots of prior and posterior concentrations against independent observations 1063 
(observations that were not included in the inversion algorithm) from the EMEP network 1064 
(https://emep.int/mscw/, Error! Reference source not found.) from January to July 2020. Three 1065 
statistical measures (nRMSE, nMAE and RMSLE) were used to assess the performance of each 1066 
inversion using three different prior emission inventories for ammonia (EC6G4, VD and 1067 
avgEENV). 1068 
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 1070 

Figure 2. (a) Total a priori emissions of ammonia over Europe for the inversion period (January – 1071 
June). The emissions correspond to avgEENV prior, and the total emitted amount is equal to 1061 kt. 1072 
(b) Total a posteriori emissions of ammonia over Europe for the inversion period (January – June) 1073 
for the reference period 2016 – 2019 (using avgEENV prior) that amount 1665 kt. (c) Total posterior 1074 
emissions of ammonia over Europe for January – June 2020 (1568 kt) using the avgEENV as the 1075 
prior. (d) Timeseries of weekly-average prior emissions of ammonia over Europe (January to June 1076 
2020) from avgEENV prior. (e) Timeseries of weekly-average posterior emissions of ammonia over 1077 
Europe for the reference years 2016–2019 (January to June) (yellow, green, cyan, magenta colors). 1078 
(f) Timeseries of weekly-average posterior emissions of ammonia over Europe in 2020 resulting from 1079 
inversions using the avgEENV prior are plotted together with the CrIS observations averaged over 1080 
Europe (red line) and minimum, mean and maximum ammonia emissions in the reference period 1081 
(2016–2019). The single top number -9.8% shows percentage change in ammonia emissions during 1082 
the 2020 lockdown as compared to the same period in reference years, whereas two bottom ones show 1083 
the corresponding changes in ammonia emissions (i) during the 2020 lockdown as compared to the 1084 
period before lockdown (+13.3%), and (ii) the period after lockdown finished as compared to the 1085 
lockdown period +18.3%), known as rebound period. 1086 
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 1089 

Figure 3. Timeseries of weekly-average posterior emissions of ammonia in different European 1090 
countries in 2020 resulting from inversions using prior information from avgEENV plotted together 1091 
with the CrIS observations averaged over Europe (red line) and minimum, mean and maximum 1092 
ammonia emissions for the reference period (2016–2019). The single top numbers show the change 1093 
in ammonia emissions during the 2020 lockdowns (15 March – 30 April) as compared to the same 1094 
period the years before (2016-2019), whereas the two bottom ones show the respective changes in 1095 
ammonia emissions during the 2020 lockdown as compared to the period before the lockdown, and 1096 
after lockdown finished compared to the lockdown period (rebound period). 1097 
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 1100 

Figure 4. (a) Difference of posterior from prior emissions of ammonia during the European 1101 
lockdowns of 2020 (15 March – 30 April) using the avgEENV emissions as the prior. (b) Emission 1102 
anomaly relative to the 2020 lockdowns from the 2016-2020 period (15 March – 30 April). 1103 
Difference in posterior ammonia (c) during the 2020 lockdowns (15 March – 30 April, Lock) from 1104 
the period before (1 January – 14 March) and (d) after the 2020 lockdowns (1 May – 31 June, Reb) 1105 
from the period during the 2020 lockdowns (15 March – 30 April, Lock) compared with the 1106 
reference years (2016–2019). 1107 
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 1110 

Figure 5. (a) Absolute uncertainty from use of different surrounding grid area for each spatial 1111 
element of our inversion domain in the sensitivity tests; 2° to 4° grid-cells were considered resulting 1112 
in a mean relative uncertainty of 4%. (b) Absolute uncertainty from use of four different prior 1113 
emission estimates, namely EC6G4, VD, EGG and NE (see section 2.3). Here, a much larger 1114 
uncertainty was calculated, due to the use of tenfold different prior emission datasets. (c) 1115 
Propagated absolute uncertainty from the different sensitivity tests, and (d) relative uncertainty with 1116 
respect to the posterior emissions (Figure 2c). The average uncertainty in the inversion domain for 1117 
the first half of 2020 was estimated to be 48%. 1118 
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 1121 

Figure 6. (a) Modelled lifetime (blue) and loss-rates (red) of atmospheric ammonia averaged over 1122 
Europe for January – June 2020. The lockdown period (15 March – 30 April) is shaded in yellow. 1123 
Right after COVID-19 restrictions were applied, loss-rates of ammonia (shown in red) were 1124 
disturbed due to reported decreases on 𝑆𝑂! and 𝑁𝑂" (Guevara et al., 2021; Doumbia et al., 2021), 1125 
precursors of sulfuric and nitric acids (with which ammonia reacts to form PM2.5) and the constant 1126 
accumulation of atmospheric ammonia. This had an effect on the lifetime of ammonia (plotted in 1127 
blue), which started increasing in Europe leading to further accumulation of ammonia. (b) 1128 
Observations of PM2.5 from the EMEP stations (78 stations) plotted against modelled PM2.5 1129 
concentrations, both averaged over Europe, from primary sources and secondary formation. It is 1130 
evident that right after lockdown (yellow shade), secondary PM2.5 formation maintained high 1131 
concentrations across Europe. 1132 
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