Preprints
https://doi.org/10.5194/ar-2024-28
https://doi.org/10.5194/ar-2024-28
05 Nov 2024
 | 05 Nov 2024
Status: this preprint is currently under review for the journal AR.

Base synergy in freshly nucleated particles

Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm

Abstract. Sulfuric acid (SA), ammonia (AM) and dimethylamine (DMA) are believed to be key contributors to new particle formation (NPF) in the atmosphere. NPF happens through gas-to-particle transformation via cluster formation. However, it is not obvious how small clusters grow to larger sizes and eventually form stable aerosol particles. Recent experimental measurements showed that the presence of mixtures of bases enhance the nucleation rate several orders of magnitude. Using quantum chemistry methods, this study explores this base synergy in the formation of large clusters from a mixture of SA, AM, and DMA. We calculated the binding free energies of the (SA)n(AM)x(DMA)nx clusters, with n from 1 to 10, where x runs from 0 to n. The cluster structures were obtained using our recently developed comprehensive configurational sampling approach based on multiple ABCluster runs and metadynamics sampling via CREST. The structures and thermochemical parameters are calculated at the B97-3c level of theory. The final single point energy of the clusters is calculated at the ωB97X-DJB3/6-311++G(3df,3pd) level of theory.

Based on the calculated thermochemistry, we found that AM, despite being a weaker base, forms more intermolecular interactions than DMA and easily becomes embedded in the cluster core. This leads to the mixed SA-AM/DMA clusters being lower in free energy compared to the pure SA–AM and SA–DMA clusters. We find that the strong base DMA is important in the very initial steps in cluster formation, but for larger clusters an increased ammonia content is found. We also observed that the cluster-to-particle transition point for the mixed SA–AM–DMA clusters occurs at a cluster size of 14 monomers, which is notably smaller than the transition points for the pure SA-AM (16 monomers) or pure SA–DMA (20 monomers) systems. This indicates a strong synergistic effect when both AM and DMA are present, leading to the formation of stable freshly nucleated particles (FNPs) at smaller cluster sizes. These findings emphasize the importance of considering several base molecules, when studying the formation and growth of FNPs.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm

Status: open (until 17 Dec 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm

Viewed

Total article views: 26 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
24 1 1 26 0 0
  • HTML: 24
  • PDF: 1
  • XML: 1
  • Total: 26
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 05 Nov 2024)
Cumulative views and downloads (calculated since 05 Nov 2024)

Viewed (geographical distribution)

Total article views: 26 (including HTML, PDF, and XML) Thereof 26 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 06 Nov 2024
Download
Short summary
Aerosol formation is an important process for our global climate. However, there are large uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular cluster composed of sulfuric acid (SA), ammonia (AM) and dimethyl amine (DMA). We find that mixed SA-AM-DMA clusters more efficiently for freshly nucleated particles compared to the pure SA-AM and SA-DMA systems.
Altmetrics