430 Nomenclature

	\bar{r}	average of the outer and inner radii	_
	\bar{x}	mean particle size	m
	β	ratio of Q_a to Q_{sh}	_
435	η	dynamic viscosity	Pas
	κ	ratio of r_1 to r_4	_
	Ω	transfer function	_
	ω	angular speed	1/s
	Ω_{max}	maximum height of a the transfer function	_
	σ	width of a the transfer function	_
440	au	particle relaxation time	S
	$ au^*$	nominal particle relaxation time	S
	$\widetilde{\mu_2},\widetilde{\mu_1}$	fit parameters for the shift of a Gaussian function	_
	$\widetilde{\mu}$	shift of a the transfer function	_
445	$\widetilde{ au}$	normalized particle relaxation time	_
	\widetilde{Z}	normalized particle mobility	_
	a, d	fit parameters for the height of a Gaussian function	_
	a_c	centrifugal acceleration	$\mathrm{m/s^2}$
	c, e	fit parameters for the width of a Gaussian function	_
450	c_0	total number concentration	$\#/\mathrm{m}^3$
	Cu	Cunningham slip correction factor	_
	d_m	electric mobility equivalent diameter	\mathbf{m}
	d_v	volume equivalent diameter	\mathbf{m}
	d_{ae}	aerodynamic equivalent diameter	m

	d_{st}	stokes equivalent diameter	m
455	E	electric field magnitude	V/m
	F_c	centrifugal force	N
	F_{Dr}	drag force	N
	F_{el}	electrical force	N
	L	length of the CDMA transfer path	\mathbf{m}
460	m_P	particle mass	kg
	n_1	particle number concentration after the first device in a tandem setup	$\#/\mathrm{m}^3$
	n_2	particle number concentration after both devices in a tandem setup	$\#/\mathrm{m}^3$
	Q_a	aerosol volume flow	m^3/s
	Q_P	particle charge	As
465	Q_s	sample volume flow	m^3/s
	Q_{ex}	excess air volume flow	m^3/s
	Q_{sh}	sheath air volume flow	m^3/s
	r_1	inner radius	m
	r_2	maximum radius at which the particles enter	m
470	r_3	minimum radius of which the particles are still classified	\mathbf{m}
	r_4	outer radius	\mathbf{m}
	r_{in}	actual radius at which the particle enters	m
	s	radial distance	m
475	s_{max}	maximum radial distance	m
	T	truncation factor	_
	U	voltage	V
	u	velocity of the air	m/s

	w_{Dr}	particle drift velocity	m/s
	y	position of the particle in stream-wise direction	m
180	Z^*	nominal particle mobility	$\mathrm{m}^2/(\mathrm{Vs})$
	Z_p	particle mobility	$m^2/(Vs)$