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Abstract. The spatial-temporal distribution of aerosol particles in the atmosphere has a great impact on radiative transfer,

clouds, and air quality. Modern remote sensing methods as well as airborne in-situ measurements by unmanned aerial vehicles

(UAV) or balloons are suitable tools to improve our understanding of the role of aerosol particles in the atmosphere. To validate

the measurement capabilities of three relatively new measurement systems and to bridge the gaps that are often encountered

between remote sensing and in-situ observation as well as to investigate aerosol particles in and above the boundary layer,5

we conducted two measurement campaigns and collected a comprehensive dataset employing a scanning aerosol LIDAR, a

balloon-borne radiosonde with the Compact Optical Backscatter Aerosol Detector (COBALD), an optical particle counter

(OPC) on a
::
an UAV, as well as a comprehensive set of ground-based instruments. The extinction coefficients calculated from

near-ground-level aerosol size distributions measured in-situ are well correlated with those retrieved from LIDAR measure-

ments with a slope of 1.037 ± 0.015 and a Pearson correlation coefficient of 0.878, respectively. Vertical profiles measured10

by an OPC-N3 on a
::
an

:
UAV show similar vertical particle distributions and boundary layer heights as LIDAR measurements.

However, the sensor, OPC-N3, shows a larger variability in aerosol backscatter
::::::::::::
backscattering coefficient measurements with

a Pearson correlation coefficient of only 0.241. In contrast, the COBALD data from a balloon flight are well correlated with

LIDAR-derived backscatter data from the near ground level up to the stratosphere with a slope of 1.063 ± 0.016 and a Pearson

correlation coefficient of 0.925, respectively. This consistency between LIDAR and COBALD data reflects a good data quality15

of both methods and proves that LIDAR can provide reliable and spatial distributions of aerosol particles with high spatial

and temporal resolutions. This study shows that the scanning LIDAR has the capability to retrieve backscatter
::::::::::::
backscattering

coefficients near ground level (from 25 m to 50 m above ground level) when it conducts horizontal measurement which isn’t

possible for vertically pointing LIDAR. These near-ground-level retrievals compare well with ground-level in-situ measure-

ments. In addition, in-situ measurements on the balloon and UAV validated scanning LIDAR retrievals within and above the20

boundary layer. The scanning aerosol LIDAR allows us to measure aerosol particle distributions and profiles from the ground

level to the stratosphere with an accuracy equal or better than in-situ measurements and with a similar spatial resolution.
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1 Introduction

The large varieties of aerosol spatial-temporal distributions in the atmosphere cause large uncertainties in radiative forcing

globally (Ramanathan et al., 2001) and these uncertainties have a great impact on climate change
:::::::::
simulations

:
(Stocker, 2014).25

The distributions and evolution of aerosol are related to the emission of aerosols (Grythe et al., 2014; Tegen and Schepanski,

2018; Hamilton et al., 2022) and the their loss pathway (Poreh and Cermak, 1964; Cheng et al., 2011; Xiang et al., 2019; Xue

et al., 2022). In addition, another important factor affecting radiative forcing is aerosol optical properties (e.g. single scatter

::::::::
scattering albedo (SSA), LIDAR ratio, scatter

:::::::
scattering

:
and absorption coefficients) (Alam et al., 2011; Romshoo et al., 2021),

which also have large varieties for different types of aerosols (Lesins et al., 2002; Floutsi et al., 2022).30

Many methods have been used to measure the spatial-temporal distribution and
::
of aerosol optical parameters regionally and

globally. One of the most successful instruments for this purpose is the Moderate Resolution Imaging Spectroradiometer

(MODIS) on Terra and Aqua satellites (Filonchyk and Hurynovich, 2020; Qin et al., 2021). MODIS can provide column-

integrated optical parameters like aerosol optical depth (AOD), Ångström exponent (AE), and single scatter
::::::::
scattering albedo

(SSA) to study the optical properties of mineral dust (Kaufman et al., 2005; Ginoux et al., 2012), urban aerosol (More et al.,35

2013; Munchak et al., 2013), forest fire smoke (MAE, 2009; Huesca et al., 2009) etc. Another successful satellite mission is the

Cloud-Aerosol LIDAR
::::
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). CALIPSO combines an active LIDAR

instrument with passive infrared and visible imagers
::::::
images to probe the vertical structure and properties of thin clouds and

aerosols over the globe (Winker et al., 2009; Wang et al., 2021; Salehi et al., 2021).
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Winker et al., 2009; Wang et al., 2021; Salehi et al., 2021; Tesche et al., 2014)

:
.
:::::
China

::::::::
launched

:::
its

::::
first

::::::::::
space-borne

::::::::::::
aerosol-cloud

:::::::::::::::::::
high-spectral-resolution

:::::
lidar

::::::::::
(ACHSRL)

:::
on

::::
April

::::
16,

:::::
2022,

::::::
which

::
is40

::::::
capable

:::
for

::::
high

::::::::
accuracy

:::::::
profiling

::
of
::::::::

aerosols
:::
and

::::::
clouds

::::::
around

:::
the

:::::
globe

::::::::::::::
(Ke et al., 2022).

:::::
Also,

:::
the

:::::
Earth

::::::
Cloud,

:::::::
Aerosol

:::
and

::::::::
Radiation

::::::::
Explorer

:::::::::::
(EarthCARE)

::
is

:
a
:::::::
satellite

:::::::
mission

::::::::::
implemented

:::
by

:::
the

::::::::
European

:::::
Space

:::::::
Agency

::::::
(ESA),

::
in

::::::::::
cooperation

::::
with

:::
the

:::::
Japan

::::::::::
Aerospace

::::::::::
Exploration

:::::::
Agency

::::::::
(JAXA),

::
to

::::::::
measure

::::::
global

::::::
profiles

:::
of

::::::::
aerosols,

::::::
clouds

::::
and

:::::::::::
precipitation

::::::::
properties

:::::::
together

::::
with

::::::::
radiative

:::::
fluxes

:::
and

:::::::
derived

::::::
heating

:::::
rates,

:::
due

:::
for

::::::
launch

::
in

::::
May

:::::
2024

:::::::::::::::
(Wehr et al., 2023)

:
.

In addition to these satellite missions, ground-based remote sensing methods are used to investigate aerosol optical proper-45

ties (Kotthaus et al., 2023)
::::::::::::::::::::::::::::::::::
(Adam et al., 2020; Mylonaki et al., 2021). Over the last decades, many ground-based observation

networks were established to investigate aerosol properties regionally and globally. For example, the AERONET (AErosol

RObotic NETwork) project is a federation of ground-based remote sensing aerosol networks that provides globally distributed

observations of spectral aerosol optical depth (AOD), inversion products, and precipitation water in diverse aerosol regimes

(Holben et al., 1998; Prasad and Singh, 2007; Mielonen et al., 2009). The Micro-Pulse LIDAR Network (MPLNET) is a fed-50

erated network of Micro-Pulse LIDAR (MPL) systems designed to measure aerosol and cloud vertical structure, and boundary

layer heights (Welton et al., 2006; Lolli et al., 2018). The European Aerosol Research LIDAR
:::::
Lidar Network (EARLINET) is

a multi-wavelength LIDAR network designed to create a quantitative, comprehensive, and statistically significant database for

the horizontal, vertical, and temporal distribution of aerosols on a continental scale (Pappalardo et al., 2014a; Marinou et al.,

2017).55

::::::
Aerosol

::::::
elastic

:::::::::
scattering

::::
lidar

:::
is

::::::
widely

::::
used

:::
in

::::
lidar

:::::::::::
observation

::::::::
networks

::
as

::
it
::::

can
:::::::
provide

:::::::
detailed

::::::::::
information

:::::
with
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::::
high

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolution.

:::::::::
However,

::::::::
retrieving

:::::::::::::
backscattering

::::::::::
coefficients

::::
from

::::
this

::::
kind

:::
of

::::
lidar

::::
data

::::::::
requires

::::::::::
assumptions

::
of

:::::
lidar

:::::
ratios

:::
and

::::::::
reference

::::::
values

:::::::::::::::::::::::::
(Fernald, 1984b; Klett, 1985b)

:
.
::::
One

::
of

:::
the

:::::::::::
successfully

::::
used

:::::::::
technology

:::
to

::::::::
overcome

:::
this

::::::::
problem

::
is

:::
the

::::::
Raman

:::::
lidar

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wandinger, 2005; Groß et al., 2015; Baars et al., 2016; Hu et al., 2022).

::::::::
Another

:::::
widely

:::::
used

:::::::::
technology

::
is

:::
the

::::
high

::::::
spectral

:::::::::
resolution

::::
lidar

:::::::
(HSRL)

::::::::::::::
(Liu et al., 1999)

:::::
which

::::
used

:::::::::::
narrow-band

::::
filter

::::
(e.g.

:::::
atom60

::
or

::::::::
molecule

:::::
filter)

::
to

:::::::
separate

::::::
signals

:::::
from

::::::::
molecule

:::
and

:::::::
particle

:::::::::
backscatter

:::::::::::::::::::::::::
(Piironen and Eloranta, 1994).

::::
And

::::
this

::::::
HSRL

:::::
allows

:::
us

:::::
better

::
to

:::::::::
investigate

::::::
aerosol

::::::
optical

:::::::::
properties

::::::::::::::::::::::::::::::::::::
(Burton et al., 2012, 2014; Groß et al., 2013)

:
.
::::::::
Recently,

:
a
::::::

HSRL
::::
that

:::
uses

:::
an

::::::::::::
interferometer

::
as

::::
filter

:::
has

:::::
been

:::::::
deployed

::
at
:::::
other

:::::::::::
wavelengths.

:::
The

:::::::
recently

::::::::
launched

:::::::
Doppler

:::::
Wind

:::::
Lidar,

:::::::::
ALADIN,

:::
uses

::::
this

::::::::::
technology

::
to

::::::::
measure

::::::::::
tropospheric

:::::
wind

:::::::
profiles

:::
on

:
a
::::::

global
:::::
scale

:::
but

::::
can

::::
also

::::::
obtain

::::::
vertical

:::::::
aerosol

:::::::
profiles

:::::::::::::::::::
(Schillinger et al., 2003)

:
.65

In-situ measurements can also help us better understand aerosol optical properties. The most common instruments are the neph-

elometer and aethalometer, which can measure the wavelength-dependent optical parameters like scatter
::::::::
scattering and absorp-

tion coefficients of aerosol particles (Anderson et al., 1996; Drinovec et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anderson et al., 1996; Zieger et al., 2011; Drinovec et al., 2015)

. The aerosol optical parameters are determined by particle size distribution, particle shape, and complex refractive index

(Bohren and Huffman, 2008; Yao et al., 2022). The size distribution can be measured by different kinds of particle sizers like70

Scanning Mobility Particle Sizer (SMPS), Optical Particle Counter (OPC), and Aerodynamic Particle Sizer (APS). The aerosol

complex refractive index is related to the aerosol chemical composition which can be measured by aerosol mass spectrometry

::
as

::::
well

::
as

:::
the

:::::::
relative

:::::::
humidity

:::::::::::::::::
(Zieger et al., 2015). For decades, these in-situ aerosol characterization instruments not only

provided valuable datasets at ground level (Huang et al., 2019; Jiang et al., 2022) but also were deployed on aircraft, balloons,

::::::::
mountains

:::::::::::::::::
(Zieger et al., 2012),

:
and unmanned aerial vehicles to get vertical profiles of aerosol parameters (Bahreini et al.,75

2003; Zhen et al., 2018; Brunamonti et al., 2021).

LIDAR is a powerful tool to measure the spatial distribution and optical parameters of aerosol (Böckmann et al., 2004; Matthais et al., 2004)

. Although many results have reported aerosol measurements by LIDAR (Matthias and Bösenberg, 2002; Pappalardo et al., 2014b; Hofer et al., 2020; Ceolato and Berg, 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Matthias and Bösenberg, 2002; Pappalardo et al., 2014b; Hofer et al., 2020), there are fewer reports on comparison of in-situ

measurement with LIDAR measurement to quantify uncertainties of LIDAR retrievals (Düsing et al., 2018; Xiafukaiti et al., 2020; Düsing et al., 2018)80

:::::::::::::::::::::::::::::::::::
(Xiafukaiti et al., 2020; Düsing et al., 2018). In addition, most vertical pointing LIDAR systems have overlap gap between the

detector’s field of view and the laser beam from tens to around one thousand meters, which makes it difficult to get valid

measurement near the surface (Wandinger and Ansmann, 2002) to compare with ground level in-situ measurements. However,

scanning LIDAR can conduct horizontal measurements allowing to get vertical profiles of aerosol particles and boundary layer

structure near the ground level (Althausen et al., 2000). In addition, scanning aerosol LIDAR can also determine LIDAR ratios85

to reduce the uncertainties in the LIDAR retrievals (Fernald, 1984a; Zhang et al., 2022).

In recent years, vertical profiles of aerosol are also investigated more and more by Unmanned Aerial Vehicles (UAV) and

LIDAR. For example, Liu et al. (2020) used the UAVs and LIDAR to study the vertical distribution of PM2.5 and interac-

tions with the atmospheric boundary layer during the development of heavy haze pollution. Ferrero et al. (2019) compared the

backscatter
:::::::::::
backscattering

:
coefficient retrieved from LIDAR with that calculated from aerosol size distributions measured by90

OPC on tethered balloons in the Arctic to study the role of aerosol chemistry and dust composition in a closure experiment.
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Zhang et al. (2021) compared boundary layer heights retrieved from aerosol LIDAR and tethered balloon measurements in

semi-arid regions. Liu et al. (2021) found that wind shear generating turbulence reshaped the vertical profiles of parameters

such as potential temperature (θ) and PM2.5 in the nocturnal boundary layer, which was the key factor leading to the de-

velopment of entrainment at nighttime. Reineman et al. (2016) used ship-launched fixed-Wing UAVs to measure the marine95

atmospheric boundary layer and ocean surface processes. In addition, the vertical profiles of atmospheric parameters related

to aerosol process such as temperature (Zarco-Tejada et al., 2012), relative humidity (Spiess et al., 2007), wind (Spiess et al.,

2007) and ozone concentration (Guimarães et al., 2019) are also obtained from UAV flights.

However, to our best knowledge, so far no dedicated comparison of scanning LIDAR measurement with in-situ observation

has been performed over a wide altitude range . Therefore
:::
and

::::
over

::::
such

::
a

::::
long

::::
time

::::::
period

:::
for

::::::::::
comparison

::
at

::::::
ground

:::::
level100

::::
(e.g.

:::
one

::::::
month

::::::
dataset

::::
with

::
10

::::::
minute

::::::::::
resolution).

::::
Also

::
in

:::::
order

::
to

:::::
bridge

:::
the

::::
gaps

::::
that

:::
are

::::
often

:::::::::::
encountered

:::::::
between

::::::
remote

::::::
sensing

:::
and

::::::
in-situ

::::::::::
observation, we compared datasets on aerosol spatial-temporal distributions and evolutions

:::::::
evolution

:
com-

bining remote sensing and in-situ measurements. Two field campaigns were conducted employing a scanning aerosol LIDAR,

a radiosonde with a backscatter sensor, an OPC on a UAV, and a comprehensive set of ground-level instruments. The first

field campaign was conducted in downtown Stuttgart to compare LIDAR retrievals with ground level in-situ measurements.105

The second field campaign was done at the Jülich research center to compare LIDAR retrievals with OPC measurements on a

UAV and a COBALD backscatter sensor on a radiosonde. The aim of this work is to compare the different methods in aerosol

measurements, to validate scanning LIDAR retrievals, to discuss the uncertainties of the different methods and the boundary

layer evolutions from LIDAR and UAV retrievals.

2 Methods110

Two field campaigns were conducted in downtown Stuttgart and at Jülich research center to compare scanning aerosol LIDAR

measurements with different in-situ measurements. The first field campaign was conducted from February 5th to March 5th,

2018 in downtown Stuttgart (9.2024◦ E 48.7986◦ N, 247 m above sea level) employing a mobile container and a scanning

aerosol LIDAR on the roof of the container. The ground-level in-situ measurements deployed in this mobile container provided

aerosol particle size distributions, aerosol chemical composition, and meteorological information (Huang et al., 2019). The115

second field campaign was conducted from July 5th to 12th, 2018 at Jülich research center (6.4131◦ E, 50.9084◦ N, 110

m above sea level) employing a scanning aerosol LIDAR, a COBALD sensor hosted by a Vaisala RS41-SGP radiosonde,

and an OPC on UAV. The scanning LIDAR called KASCAL used in these two field campaigns was developed by Raymetrics

(LR111-ESS-D200, Raymetrics Inc.). A UAV (eBee, senseFly) carrying one OPC (OPC-N3, Alphasense Inc.), weather sensors

and Global Positioning System (GPS) sensors provided altitude-dependent particle size distribution and also meteorological120

information above the Jülich research center. In addition, atmospheric parameters like pressure, temperature, relative humidity

and wind information from the ground to 30 km above Jülich research center were gathered by a GPS-equipped radiosonde

onboard a balloon that carried COBALD to measure altitude-dependent in-situ backscatter
:::::::::::
backscattering

:
coefficients at two

wavelengths (455 nm & 940 nm) (Brunamonti et al., 2021). The measurements during this work indicated that the basckatter
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was dominated by smaller particles with low depolarisation ratios so that it seemed justified to use a spherical model to represent125

these aerosol particles (Khlebtsov et al., 2005; Moroz, 2009; Wang et al., 2023). Hence, a Mie code (Leinonen, 2016) was used

to calculate extinction coefficients and backscatter
::::::::::::
backscattering

:
coefficients from aerosol size distributions for comparison

with the LIDAR retrieval.

2.1 Scanning aerosol LIDAR

The 3D scanning LIDAR (KASCAL) used in the above two field campaigns has an emission wavelength of 355 nm and130

is equipped with elastic, depolarization, and vibrational Raman channels, hence allowing to retrieve extinction coefficients,

backscatter
:::::::::::
backscattering

:
coefficients, and depolarization ratios. The laser pulse energy and repetition frequency are 32.1

mJ and 20 Hz, respectively. The laser head, 200 mm telescope, and LIDAR signal detection units are mounted on a rotating

platform allowing zenith angles from -7◦ to 90◦ and azimuth angles from 0◦ to 360◦. This LIDAR works automatically,

time-controlled, and continuously via software developed by Raymetrics. Detailed information can be found at https://www.135

raymetrics.com/product/3d-scanning-LIDAR, last access: 8 March 2021 (Avdikos, 2015; Zhang et al., 2022). During the first

field campaign in downtown Stuttgart, the LIDAR conducted zenith scanns with an elevation angle from 90 ◦ to 5◦ in steps

of 5◦. The measurements at 5◦ were used over a range representative of an altitude of 25-50 m to compare with ground-level

in-situ measurements (3.7 m above ground level). It is assumed that these values are comparable within the mixing layer.

During the second field campaign at Jülich research center, the LIDAR conducted zenith scans during UAV launch and the140

measurements at all elevation angles were used to get vertical profiles of aerosols from ground level up to the free troposphere

to compare with an OPC measurement on the UAV. In addition, the LIDAR also conducted vertical pointing measurements in

the night of July 12th, 2018 at Jülich research center to compare the vertical profiles of backscatter
:::::::::::
backscattering

:
coefficients

from LIDAR retrievals and COBALD measurement on board of a radiosonde.

For the data analysis and calibration of the LIDAR system, we followed the quality standards of the European Aerosol Research145

LIDAR Network (EARLINET )
::::::::::
EARLINET (Freudenthaler, 2016). For data analysis of zenith scans, we determine the vertical

backscatter
:::::::::
determined

:::
the

::::::
vertical

::::::::::::
backscattering

:
coefficient profiles using the Klett-Fernald method (Fernald, 1984a; Klett,

1985a). And these vertical profiles of aerosol backscatter
:::::::::::
backscattering

:
coefficients was used as the reference values for other

observation angles. In addition, the measured temperatures and pressures from UAVs and balloons were used to calculate the

molecular backscatter
::::::::::::
backscattering coefficients which can be used in LIDAR retrievals.150

The atmospheric boundary layer height
:::
can

::
be

:
determined from LIDAR by using the Haar wavelet transform (HWT) method

is defined as

zHWT =max[wf (a,b)] = max
1

a

zmax∫
zmin

X(z)H(
z− b

a
)dz

5
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In which wf is the covariance transform value, X(z) is the range corrected LIDAR signal defined as X(z) = P (z) ∗ z2, and

H( z−b
a ) is the Harr wavelet function as defined as followed:155

H(
z− b

a
) =


1 b− a

2 ≤ z ≤ b

−1 b≤ z ≤ b+ a
2

0 elsewhere

The dilation a was tested and set to be 75 m for this work. Zmin and zmax are the lower and upper heights for the LIDAR signal

profile, respectively. In addition,
:::::::::::::::
(Baars et al., 2008).

:::::::::::
Furthermore,

:
the boundary layer height was also retrieved from vertical

profile
::::::
profiles

:
of potential temperature by using gradient method. (Seidel et al., 2010; Li et al., 2021).

:::
the

:::::::
gradient

:::::::
method

::::::::::::::::::::::::::::
(Seidel et al., 2010; Li et al., 2021).

:
160

2.2 Ground-level in-situ measurements in downtown Stuttgart

The ground-level in-situ instruments were deployed in a mobile container that was deployed in a parks downtown Stuttgart.

Ambient temperature, relative humidity, wind direction, wind speed, global radiation, pressure, and precipitation data were

measured by a meteorological sensor (WS700, Lufft GmbH). Trace gases (O3, CO2, NO2, SO2) were measured with the

gas monitors (Environment S.A). Particle number concentrations were recorded with two CPCs (CPC 3774, 3022, TSI Inc,).165

Particle size distributions were measured with SMPS (DMA: TSI 3080, TSI Inc; CPC: CPC3022, TSI Inc), and OPC (Fidas200,

Palas, Inc). The OPC (Fidas200, Palas, Inc.) continuously measured particles in the size range of 0.18 - 18 µm. The OPC

used Lorenz-Mie theory to determine the particle number size distribution and this size distribution can be used to calculate

extinction coefficients via a Mie code (Leinonen, 2016). In this experiment, Fidas200 was operated with a flow rate of 5 L/min

and with a time resolution of 1 s.170

Figure 1 shows the workflow in deriving the aerosol extinction coefficients from Mie calculations based on in-situ aerosol

characterisation instruments. The aerosol sizer (e.g. OPC) can provide dry aerosol particle size distribution, which can be

converted to the ambient aerosol size distributions by using hygroscopic growth factors (κ) calculated from aerosol chemical

composition using the ISORROPIA II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). The aerosol chemical175

composition was measured by HR-TOF-AMS (Aerodyne Inc.). Most
::
As

:::::
most

:
aerosol particles are constrained and well-

mixed within the boundary layerand
:
, the aerosol complex refractive index remains almost constant (Raut and Chazette, 2008).

Although, the sun photometer is integrating over the whole vertical column, the relatively high aerosol concentrations in the

boundary layer dominate (Li et al., 2017). Therefore, it seem justified to use the aerosol complex refractive index derived

from a nearby sun photometer (CE-318). Hence, we used the aerosol complex refractive index derived from a nearby sun180

photometer (CE-318). With ambient aerosol size distribution and complex refractive index, optical parameters (e.g. extinction

coefficients) were calculated to compare with LIDAR retrievals. Process flow in deriving aerosol extinction coefficients from

Mie calculation and parameters used in Mie calculations. κaero is the composition dependent hygroscopicity growth factor.
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Figure 1.
::::::
Process

:::
flow

::
in
:::::::
deriving

:::::
aerosol

::::::::
extinction

:::::::::
coefficients

:::
from

::::
Mie

::::::::
calculation

:::
and

::::::::
parameters

::::
used

::
in

:::
Mie

::::::::::
calculations.

::::
κaero::

is
:::
the

:::::::::
composition

::::::::
dependent

:::::::::::
hygroscopicity

:::::
growth

:::::
factor.

2.3 UAV and balloon-borne measurements at Research Center Jülich

Data of an OPC (OPC-N3, Alphasense, Inc) on a UAV and a COBALD backscatter sensor (Institute for Atmospheric and185

Climate Science, ETH Zurich) on a balloon were collected at Jülich research center in July 2018. The UAV used in this field

campaign is a fixed-wing drone (eBee, senseFly) which is operated by the Institute of Energy and Climate Research - Tropo-

sphere (IEK-8). Its payload is 320 g at a total weight of 750 g with the highest observation altitude of approximately 1200 m

above ground level. The ascent and descent velocity of this UAV was around 3.2 m/s. The measurement sensors were mounted

inside the UAV. The size distributions were measured in real-time with a time resolution of 1.6 s by OPC-N3. Additionally,190

atmospheric parameters such as air temperature, air pressure, relative humidity, wind speed, and wind direction were measured

with a temporal resolution of 1 s. The UAV was launched 5 times during the morning from 7:00 to 10:00 on July 9th to measure

the boundary layer dynamics in the early morning and was launched 7 times from 03:50 to 16:30 on July 12th to measure the

boundary layer transition from nocturnal boundary layer to the mixing layer. The detailed UAV fights information can be found

7



in Table 1.

Table 1. Time, altitude, and duration of UAV flights for the experiments on July 9th and July 12th, 2018.

Flight number Date Minimum altitude (m a.s.l.) Maximum altitude (m a.s.l.) Duration (s)

2018070901 2018.07.09 07:39 90.9 1246.5 709.5

2018070902 2018.07.09 07:48 92.4 1244.8 705.1

2018070903 2018.07.09 08:10 90.9 1243.8 711.7

2018070904 2018.07.09 08:29 89.5 1235.5 691.6

2018070905 2018.07.09 09:34 93.1 1752 1105.5

2018071201 2018.07.12 04:16 91.4 1247.1 701.3

2018071202 2018.07.12 04:31 94.8 1246.1 721.7

2018071203 2018.07.12 07:09 92.7 1246.5 719.6

2018071204 2018.07.12 07:33 93.2 1240.9 717.8

2018071205 2018.07.12 09:44 98.6 1253.7 722.3

2018071206 2018.07.12 14:30 92.8 1248.9 721.3

2018071207 2018.07.12 16:30 92.9 1240.2 716.5

195

Besides, a radiosonde balloon which was operated by the Institute of Energy and Climate Research - Stratosphere (IEK-7) mea-

sured the atmospheric parameters from ground to 25 km altitude. COBALD was part of a CFH / ECC ozone / RS41 payload

to provide the backscatter
::::::::::::
backscattering coefficients as well as air temperature, air pressure, relative humidity, and wind

:::::
wind,

:::
and

:::::
ozone

::::::::::::
concentration with the temporal and spatial resolution being 1s and around

::::
about

:
5 m vertically.

The COBALD is a lightweight (500 g) aerosol backscatter detector for balloon-borne measurements developed at the Insti-200

tute for Atmospheric and Climate Science (ETH Zürich), based on the original approach by Rosen and Kjome (1991). Two

light-emitting diodes (LEDs) as light sources and a photodiode detector with a FOV of 6◦ provide high-precision in-situ

measurements of aerosol backscatter at wavelengths of 455 nm (blue visible) and 940 nm (infrared). COBALD has been orig-

inally developed for the observation of high-altitude clouds, such as cirrus (Brabec et al., 2012; Cirisan et al., 2014) and polar

stratospheric clouds (Engel et al., 2014), while recently it was proven able to detect and characterize aerosol layers in the205

upper troposphere–lower stratosphere (Vernier et al., 2015, 2018; Brunamonti et al., 2018, 2021). In this work, we compared

COBALD measurements with scanning aerosol LIDAR measurements for validating LIDAR retrievals and investigating the

vertical distribution of aerosols. A summary of sensors used on UAV and balloon fights is shown in Table 2.
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Table 2. Summary of sensors used on on UAV and balloon fights.

Measurement Instrument Manufacturer sample flow

(lpm)

Time res-

olution

Mode of

operation

UAV

Particle size distribution

(0.35 - 40 µ m)

OPC-N3
Alphasensse

:::::::::
Alphasensor

5.5 1.6 s 24 size bin

T, RH ChipCap2 sensore
::::
sensor

:
Telaire 1s

Pressure, wind speed & di-

rection

eBee sensors AgEagle Aerial

Systems Inc.

1 s

Lat, lon, 1 s

Balloon

Backscatter
:::::::::::
Backscattering

ratio (455 nm & 940 nm)

COBALD IAC (ETH,

Zürich)

1 s

Ozone Electrochemical concentra-

tion cell (ECC)

JOSIE (Smit

et al., 2007)

1s

Water vapor Cryogenic frostpoint hy-

grometer (CFH)

EnSci (Vömel

et al., 2007;

Vömel et al.,

2016)

1s

Temperature Vaisala RS41-SGP Vaisala 1s

Altitude, lat, lon & horizon-

tal wind

1s

3 Results and Discussion

3.1 Comparison of LIDAR data with ground level in-situ measurements210

The comparison of LIDAR retrievals with ground-level aerosol sizer data was conducted during a field campaign from Febru-

ary 5th to March 5th, 2018 in downtown Stuttgart. In this campaign, the aerosol LIDAR did zenith scans with an elevation

angle from 90 ◦ to 5◦ in steps of 5◦. The nearly horizontal measurement at 5◦ allows to retrieve extinction coefficients near

ground level (from 25 m to 50 m above ground level) by using short-range LIDAR data (ranges: 285 m to 570 m) that can be

compared with the ground-level in situ measurements (sampled 3.7 m above ground level). The ground-level in-situ aerosol215

sizer, Fidas200, measured the aerosol size distributions which were used to calculate the aerosol extinction coefficients via

Mie code. Figure 2 shows the extinction coefficients retrieved from LIDAR measurements and from Mie calculations based

on aerosol size distribution (labeled as "Raw size distribution"). The extinction coefficients obtained from LIDAR were both

retrieved from the slope and Raman retrieval methods (Seidel et al., 2010; Ansmann et al., 1992). In the slope and Raman

9



Figure 2. Time series of ground-level extinction coefficients retrieved from LIDAR measurements (both elastic and Raman methods) ,
:::
and

:::
from

:
Mie calculation

:::::::::
calculations based on OPC raw size distribution

:::::::::
distributions

:
as well as size distribution

:::::::::
distributions

:
corrected by

counting efficiency and hygroscopic effect from February 5th to March 5th, 2018 in downtown Stuttgart.

retrieval methods, a linear regression was used and the correlation coefficients of linear regressions are 0.99 ± 0.05 and 0.99 ±220

0.06 for slope and Raman retrieval methods, respectively. This is also an indication for a rather homogeneous distribution of the

aerosol particles within the altitude range from 25 to 50 m corresponding to a range between 285 and 570 m. This figure shows

that the raw extinction coefficients from Mie calculations
:::::
based

::
on

::::
raw

::::
OPC

::::
size

::::::::::
distributions

:
are systematically lower than

those from LIDAR retrievals by a factor of 4.70 ± 1.49. The reason for this phenomenon is that the Fidas200 underestimates

the particle number by a factor of 2-10 at a diameter
::::::::
diameters

:
between 0.25 µm and 0.5 µm when compared with SMPS225

data as shown in Figure S1. The left side of Figure S1 shows the number size distribution from Fidas200 and the merged size

distribution from SMPS and APS measurements. From this figure, we can see that Fidas200 underestimated particle number

size distributions at a diameter between 0.25 µm and 0.5 µm when compared with the merged size distribution (called "loss

effect"). The right plot of this figure
:::::
Figure

:::
S1 shows the accumulated extinction coefficients calculated from Mie

:::::
theory based

on those two size distributions, which shows that the underestimation of particle numbers from 0.25 µm to 0.5 µm causes230

the modelled extinction from the Fidas200 size distributions to be lower than that modelled from merged size distribution
:::
the

:::::::::
substantial

::::::::
difference

:
by a factor of around 4.

::::
four.

:
Hence, we conclude that the underestimation of particle number

:::::::
numbers

from 0.25 µm to 0.5 µm is one of the main reasons for the underestimation of extinction coefficients based on OPC data

alone
::::::::::
uncorrected

::::
OPC

::::
data.

235

The systematic underestimation of aerosol particle number from 0.25 µm to 0.5 µm allows for calculating a counting efficiency

curve as shown in
:::::
Based

::
on

:::::::::
systematic

:::::::::
laboratory

:::::::::::::
measurements

::::
with

:::
the

::::::::
differrent

:::::::
particle

:::::
sizers

::::::::
Fidas200

:::::
OPC,

:::::::
SMPS,

:::
and

::::
APS

:::
the

::::::::::
FIDAS200

:::::::
counting

:::::::::
efficiency

::::
was

:::::::::
determined

::::
(see

:
Figure S2. Then the calculated counting efficiency curve

10



Figure 3. Correlation of extinction coefficients from LIDAR retrieval and Mie calculation from February 5th to March 5th, 2018 in Stuttgart.

The relative humidity used in the model is container indoor relative humidity and the black line is the regression fitting curve of them. The

red line is the regression fitting curve between the LIDAR-derived extinction coefficients and those from Mie calculation by using ambient

relative humidity.

was applied to the Fidas200 size distribution to get a corrected aerosol size distribution. This corrected size distribution is

:
).
::::
This

::::::::
counting

::::::::
efficiency

::::
was

::::
used

:::
to

::::::
correct

::
all

:::::::::
measured

:::
size

::::::::::::
distributions.

:::
The

::::::::
corrected

::::
size

:::::::::::
distributions

::::
were

:
used to240

calculate the corrected extinction coefficients via Mie calculation. The time series of the corrected extinction coefficients cal-

culated from the corrected size distribution is shown in Figure 2 . The orange areaindicates the extinction coefficients due

to the underestimation of aerosol particle number from 0.25 µm to 0.5 µm. After taking into account the particle number

underestimation, the modelled extinction coefficient shows good agreement with
::::::
(orange

:::::
area).

::::
The

:::::::::
calculated

:::::::::
extinction

:::::::::
coefficients

:::::
show

:
a
::::::::::

reasonable
:::::::::
agreement

::::
with

:::
the LIDAR retrievals. Although good agreement between in-situ and LIDAR245

measurements, the aerosol hygroscopic growth effect is still not considered. The modelled extinction coefficients contributed by

aerosol hygroscopic growth are labeled as "hygroscopicity (container)" and "hygroscopicity (Ambient)" in Figure 2, representing

the relative humidity used in the model are container indoor relative humidity and ambient relative humidity, respectively. The

:::
The

:
correlation plot between the extinction coefficient for container indoor relative humidity

::::
from

:::::
Fidas

:::
200

:
and the LIDAR-

derived extinction coefficient is shown in Figure 3, which shows a slope and a Pearson correlation coefficient of 1.037 ± 0.015250

and 0.878, respectively. The dashed line in this figure is the regression fitting curve between the LIDAR-derived extinction

coefficients and those from Mie calculation by using ambient relative humidity, which shows a slope and a Pearson correlation

coefficient of 1.463 ± 0.025 and 0.845, respectively. As shown in these two figures
::::::
Figure

:
2, the extinction coefficients retrieved

11



from LIDAR measurement show a similar trend for both extinction coefficients but shows better agreement with the one
::::
with

::::
those

:
calculated based on the container indoor relative humidity. The reason for a better agreement based on the indoor relative255

humidity instead of
::::::::
corrected

::::
Fidas

::::
200

::::
size

:::::::::::
distributions.

:::::
Please

:::::
note,

:::
that

:::
the

:::::::::
extinction

:::::::::
coefficient

:::::
based

::
on

:::::
Fidas

::::
200

::::
data

::
are

::::
still

:
a
:::::
little

:::::
lower

::::
than

::::
those

::::::
based

::
on

::::
lidar

:::::::::::::
measurements.

::::
This

::::
may

::
be

::::::
caused

:::
by

:
a
::::::
partial

::::
loss

::
of

:::::
water

::::
from

:::
the

:::::::
aerosol

:::::::
particles

:::
due

::
to

::::::
higher

:::::::::::
temperatures

:::::
inside

:::
the

::::::::
container.

::::::::
However,

:
the outdoor ambient relative humidity is due to the fact that

the aerosol particles lost their water partly inside the container but did not
:::
are

:::
not

::::::::
expected

::
to

:
reach equilibrium within the

::::::::
residence

::::
time

::
of 3 s residence time

::::::
seconds in the sampling line

:::::
inside

:::
the

:::::
warm

::::::::
container. Please note, that there was no dryer260

in the sampling lineand the impact of the relative humidity correction on our comparison is much smaller than the correction

of the size measurements. .
:
From the fraction of extinction coefficients shown in Figure 2, we can determine that the main

reason for causing extinction coefficient inconsistency between in-situ measurement and LIDAR retrieval is the undercounting

by the OPC.
::::
Fidas

::::
200.

:
The relatively good agreement of the extinction coefficients after our reasonable corrections reflects

the reliability of our methods and the good quality of the LIDAR retrievals.265

3.2 Comparison of LIDAR data with in-situ measurements on a UAV

The comparison of LIDAR and UAV measurements was conducted for two days, on July 9th and July 12th, 2018 to study the

vertical distribution of aerosols and the boundary layer structure. The sky was almost free of clouds during UAV flights on July

9th while it was affected by clouds within the boundary layer on July 12nd.

270

Figure 4 shows the time series of backscatter coefficientsand boundary layer
:::::::::::
backscattering

::::::::::
coefficients,

::::::::
boundary

:::::
layer

::::::
heights

::::
(pink

:::::::
squares)

::::
and

::::::
residual

:::::
layer

::::::
heights

::::::
(yellow

::::::::
squares) retrieved from LIDAR measurement (pink squares) as well as bound-

ary layer height
::::::
heights

:
(a.s.l. - above see level) obtained from

::::
UAV

::::::::::::
measurements

::::::
(black

:::
star

::::
with

:::::
white

:::::
circle

:::::::::::
surrounded)

:::
and

::::
from

:
ERA5 dataset (white dashed line) and potential temperatures obtained from UAV measurements (white solid

::::::
dataset

:::::
(white

::::::
dashed

:
line) on July 9th, 2018. This figure shows that the boundary layer height retrieved from the LIDAR measure-275

ment is consistent with the boundary layer height from the UAV measurement (the maximum gradient of potential temperature)

which both show an increasing trend of the boundary layer during the morning of this day. In addition, the boundary layer from

ERA5 also shows a similar trend as the observations but overestimates boundary layer height, especially during daytime. A

possible reason for this overestimation is that the existence of clouds during daytime reduced solar radiation and a low value

of solar radiation caused a shallow boundary layer at this time. Figure 4 also shows a stable nocturnal boundary layer and a280

residual layer during nighttime measured by scanning aerosol LIDAR. The low and stable boundary at night time can sup-

press the dispersion of aerosol near the surface. Hence, the backscatter
:::::::::::
backscattering

:
coefficients within the boundary layer

are maximum (highest aerosol concentration) during the morning rush hour due to the combined effect of the shallow bound-

ary layer and local anthropogenic emissions. After sunrise, the convection became stronger, which caused an increase of the

boundary layer height and dilution of aerosols within the boundary layer, so the aerosol concentrations within the boundary285

layer decreased. Figure ??
::
S3

:
shows the time series of range-corrected LIDAR signal and boundary layer heights retrieved

from LIDAR as well as boundary layer height obtained from
::::::
heights

::::::::
obtained

::::
from

:::::
UAV

:::::::::::
measurement

:::::
(black

::::
star

::::
with

:::::
white

12



Figure 4. Time series of backscatter
::::::::::
backscattering coefficients (contour), boundary layer height

:::::
heights

:
(
:::::
PBLH,

:
pink squares) and residual

layer retrieved
:::::
heights (

::::
RLH, yellow squares)

::::::
retrieved

:
from scanning LIDAR, as well as boundary layer heights obtained from ERA5 dataset

::::
UAV

::::::::::
measurements

:
(
::::
black

:::
star

::::
with white dashed line

::::
circle

:::::::::
surrounded) and vertical potential temperature profiles

::::
from

::::
ERA5

::::::
dataset (white

solid
:::::
dashed line) measured by UAV on July 9th, 2018.

::::
circle

:::::::::::
surrounded)

:::
and

:::::
from

:
ERA5 dataset (white dash line) and potential temperature obtained from UAV measurements

(white solid
::::::
dataset

::::::
(white

::::
dash

:
line) on July12th, 2018. The reason for showing range-corrected LIDAR signal instead of

backscatter
:::::::::::
backscattering

:
coefficients is that low-level clouds prevented retrieving the backscatter

::::::::::::
backscattering

:
coefficients290

from range-corrected LIDAR signal by the Klett-Fernald method. This figure also shows consistency in boundary layer heights

among LIDAR, UAV, and ERA5. More interestingly, the cloud existed at the top of the boundary layer from 05:00 to 13:00

and the cloud base increased with boundary layer height as captured by the LIDAR measurements. The reason for the cloud

existing on the top of the boundary layer is that the relative humidity has a maximum value at the top of the boundary layer

in the well-mixing boundary layer and this high relative humidity ambient environment provided a good conditions for cloud295

formation. Figure S3
:::
S4 shows the correlation of boundary layer heights from LIDAR and radiosonde retrievals for both two

days, which show a good correlation with a slope of 1.01 ± 0.24 and a Pearson correlation coefficient of 0.793.

Time series of range corrected LIDAR signal and boundary layer height retrieved from scanning LIDAR (pink squares) as well

as boundary layer heights obtained from ERA5 dataset (white dashed line) and vertical potential temperature profiles (white

solid line) measured by UAV on July 12th, 2018.300

A comparison of the vertical profile of aerosols from LIDAR and UAV measurements was conducted in the following steps.
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Figure 5. Vertical distribution of backscatter
:::::::::::
backscattering coefficients from LIDAR measurement (solid red line

:
,
:::::::
averaged

::::
from

::::
08:14

:
-
:::
08:

::
25), as well as backscatter

:::::::::::
backscattering coefficients derived from UAV-based measurements for raw size distributions (dashed green line),

and corrected particle size distributions (dashed black line) (inserts on the right) on July 9th, 2018. Note: The ’sfc’ on the y-axis indicates

ground surface level.

First, we used the temperature and pressure measured by UAV instead of an atmospheric model to calculate molecular

backscatter
::::::::::::
backscattering coefficients, and these molecular backscatter

::::::::::::
backscattering profiles were used for LIDAR retrievals.

Second, the backscatter
:::::::::::
backscattering

:
coefficients at all observation angles were calculated using the Klett-Fernald method

with reference values obtained from vertical profiles of the backscatter
:::::::::::
backscattering

:
coefficients. Finally, Mie theory was305

used to calculate the aerosol backscatter
::::::::::::
backscattering

:
coefficients based on size distributions measured by the UAV-borne

OPC and the complex refractive index from a nearby sun photometer. As there are no dryer before OPC-N3 sampling and
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no temperature difference between sampling tube and ambient environment, the effect of relative humidity on aerosol sam-

pling was not considered. Figure 5 shows the backscatter
::::::::::::
backscattering coefficients retrieved from LIDAR measurements

and from Mie calculations based on size distributions measured by the OPC on the UAV. In this experiment, the LIDAR310

performed zenith scans using elevation angles from 90◦ to 5◦ with steps of 5◦ during the UAV flights. Consequently, we re-

trieve the backscatter
::::::::::::
backscattering coefficients for each observation angle and the average of these backscatter

::::::::::::
backscattering

coefficients is shown as thick red line to compare with the UAV measurements.
:::
The

:::::::
average

::::
time

::
is

::::::
around

:::
11

:::::::
minutes

:::
for

::::
lidar

:::::::::::
measurement

::::
from

::::::
08:14

:
-
:::
08:

:::
25

::
on

::::
July

:::
09,

:::::
2018.

:
This figure shows that the vertical distribution of the aerosol parti-

cles in the well-mixed boundary layer is reflected well in both LIDAR and OPC measurements. Furthermore, the backscatter315

::::::::::::
backscattering coefficients from UAV retrievals (green dashed line in figure 5) show the same aerosol mixing height and the

same order of backscatter
::::::::::::
backscattering coefficients as LIDAR retrievals. The smaller backscatter

::::::::::::
backscattering

:
coefficients

calculated based on airborne OPC measurements may be related to an undercounting of the smaller particles as we have seen

for ground based OPC measurements by the Fidas 200 instrument. The size distributions were corrected (black dashed line in

figure 6) by the counting efficiency curve introduced in section 3.1. The backscatter
::::::::::::
backscattering coefficients from corrected320

size distributions
:::::
(black

::::::
dashed

::::
line

::
in

:::::
figure

::
6)

:
were consistent with the lidar-derived backscatter

::::::::::::
backscattering coefficients.

Although Fidas200 is a different OPC sensor as OPC-N3, the same undercounting phenomenon was observed for both sensors.

Please note that the particle size is averaged over 300 m and the horizontal dashed lines represent these average altitude ranges.

These vertical size distributions show that larger particles were detected only below 300 m above ground level.

325

12 UAV flights were conducted on July 9th and July 12th as shown in Table 1 to compare with LIDAR retrievals. Figure 6

shows the correlation of backscatter
::::::::::::
backscattering coefficients retrieved from LIDAR measurement and from Mie calculation

based on aerosol size distributions measured by OPC-N3 on the UAV. The data from LIDAR and UAV was averaged into 60

m vertical bins to reduce the noise of the OPC-N3 measurement. The colours of the scatter points indicated different UAV

flights. This figure shows that the backscatter
:::::::::::
backscattering

:
coefficients retrieved from LIDAR correlated on average with330

the backscatter
:::::::::::
backscattering

:
coefficients calculated from the OPC with a slope of 0.789 ± 0.096 and a Pearson correlation

coefficient of 0.234. This figure also shows that 75% of data points are within the grey shaded area, which indicates that these

data are within a factor of 3. However, in contrast to the ground level OPC measurements a dedicated correction of the low cost

OPC data for potential sampling artefacts or undercounting was not possible. This figure also shows that the UAV measure-

ments reflect the same aerosol mixing process within the boundary layer and the same order of magnitude of the backscatter335

::::::::::::
backscattering coefficient. However, the backscatter coefficients retrieved from

:::
the UAV-borne OPC in certain UAV flights

still show a relatively large deviation from LIDAR retrievalsin certain flights. One reason for these unstable observations
:::
this

::::::::
variability

:
is that the UAV cruising speed may affect aerosol sampling by the OPC-N3. The sample was

:::
were

:
collected perpen-

dicular to the flight ’s direction into the OPC, so we can expect size-dependent discrimination of larger particles.
:::::::::
Compared

::
to

:::
the

::::::::
Fidas200

::::
OPC

:::
as

:::::
shown

:::
in

::::::
section

::::
3.1,

:::
the

:::::::
OPC-N3

::::
data

:::::
show

::
a

::::::::::
significantly

::::::
higher

:::::::::
variability.

::::
This

::::::
means

::::
that

:::
we340

::::
must

::
be

:::::::
careful

::::
with

:::
the

::::::
quality

:::
and

:::
the

:::::::::
operation

::
of

::::
such

::::::
in-situ

::::::::::::
measurements

::::::::
especially

:::::
when

:::
no

::::::::
reference

::::
data

:::
like

:::::
lidar

::
are

:::::::::
available.
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Figure 6. Correlation of backscatter
:::::::::::
backscattering coefficients retrieved from LIDAR measurement and modelled from Mie calculation

based on aerosol size distribution measured by OPC-N3 on the UAV for all UAV flights on July 9th and July 12th, 2018. The different scatter

point colours indicates different UAV flights. The thick black line is a linear fit to the data and the thin dashed line is the 1:1 line

3.3 Comparison of LIDAR data with in-situ measurements onboard a balloon

A balloon which carried the COBALD sensor to measure backscatter
::::::::::::
backscattering coefficients in-situ was launched to an

altitude of around 30 km on the night of July 12th, 2018 to validate LIDAR retrievals. The LIDAR did vertically pointed345

measurements with an integration time of 60 s for each profile during the balloon launch. Figure 7a shows the range cor-

rected LIDAR signal for two hours of continuous measurement and the vertical trajectory of the balloon. As shown in this

figure, the LIDAR signal did not vary much in the first hour (the period was highlighted in this figure) while showing changes

in the second half of the experiment. Hence, we selected the first hour to compare with balloon measurements. Figure 7b

shows the horizontal trajectory of the radiosonde with the colour of the plot indicating the radiosonde altitude and the cir-350

cle indicating the distance from the LIDAR observation station. This figure shows that the horizontal displacement of the

radiosonde is about 10 km when the radiosonde reached an altitude of 10 km and this horizontal displacement may cause a

difference in backscatter
::::::::::::
backscattering

:
coefficients between LIDAR and COBALD. For the LIDAR analysis in this experi-

ment, the backscatter
:::::::::::
backscattering

:
coefficients were retrieved from elastic and Raman data with the vertical profiles of the
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molecular backscatter
:::::::::::
backscattering

:
coefficient being calculated from temperature and pressure measured by the balloon. The355

COBALD data analysis follows the procedure proposed by Brunamonti et al. (2021). First, a wavelength extrapolation yielded

the backscatter
:::::::::::
backscattering

:
coefficient at a wavelength of 355 nm from COBALD measurement. The Ångström exponent

(AE) used for this wavelength conversion is measured by COBALD at two wavelengths (455 nm & 940 nm) and extended to

the wavelength of 355 nm. Second, as the Field of View (FOV) of LIDAR and COBALD are different (the FOV of COBALD

is 6◦ whereas the FOV of LIDAR is 2.3 mrad), a FOV correction is necessary. The correction factors are calculated based on360

Mie theory and are shown in Figure 2 in Brunamonti et al. (2021).

Figure 8 shows the backscatter
::::::::::::
backscattering coefficients from COBALD and LIDAR measurement for a LIDAR integra-

tion time of 1 hour. These two profiles of backscatter
:::::::::::
backscattering

:
coefficients from LIDAR are retrieved from elastic and

Raman channel data respectively. The retrieval of backscatter
::::::::::::
backscattering

:
coefficients from elastic channel data remained

with larger uncertainty due to the assumption of a LIDAR ratio in the Klett-Fernald method. Hence, it is more meaningful to365

compare backscatter
::::::::::::
backscattering coefficients from Raman data with those from COBALD measurements. In addition, the

volume and particle depolarization ratios measured by LIDAR are shown on the right side of Figure 8. The low depolarization

ratios support our assumption that the particles are spherical and that we can use Mie calculations for the FOV correction. This

figure shows a good agreement in backscatter
:::::::::::
backscattering

:
coefficients between LIDAR Raman data retrieval and COBALD

measurement at an altitude above 2 km. However, there is a significant discrepancy at altitudes below 2 km.370

The discrepancy of the backscatter
:::::::::::
backscattering

:
coefficients between LIDAR retrievals and COBALD measurements at lower

altitudes is due to the temporal evolution of aerosol particle concentrations in the boundary layer as can be seen from vertical

profiles of backscatter
::::::::::::
backscattering coefficients with high temporal resolution in Figure S4

::
S5. This figure shows profiles of

backscatter
::::::::::::
backscattering

:
coefficients retrieved from LIDAR Raman data with 5 - minute temporal resolution and backscatter

::::::::::::
backscattering coefficients measured by COBALD as well as the vertical balloon trajectory. This figure shows a good agree-375

ment in backscatter
:::::::::::
backscattering

:
coefficients between COBALD measurement and LIDAR Raman data retrievals at the

Figure 7. Time series of range corrected LIDAR signal and radiosonde vertical trajectory (white dash line) (a) and Horizontal
::::::::
horizontal

displacement of the balloon during this experiment (b) on July 12th, 2018 at Jülich research center.
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Figure 8. Backscatter coefficients measured by balloon-borne COBALD and LIDAR (left) as well as aerosol volume and particle depolar-

ization ratio measured by LIDAR (right) on the night time of July 12th, 2018 at Jülich research center. (The integration time of the LIDAR

data is 1 hour from 21:19 to 22:19.)

altitude of the balloon passing by. The backscatter
:::::::::::
backscattering

:
values at the altitude of the balloon passing by are extracted

as shown as the red line in Figure S4
::
S5

:
to obtain merged Raman backscatter

:::::::::::
backscattering

:
coefficients. The merged Raman

backscatter coefficients and backscatter
:::::::::::
backscattering

::::::::::
coefficients

:::
and

:::::::::::::
backscattering coefficients from COBALD measure-

ments are shown on the left side of Figure 9, showing very good agreement of backscatter
::::::::::::
backscattering coefficients from LI-380

DAR and COBALD measurements at all altitudes. The correlation between LIDAR merged Raman backscatter
::::::::::::
backscattering

coefficients and COBALD backscatter
:::::::::::
backscattering

:
coefficients is shown on the right side of Figure 9, which shows these two

backscatter
:::::::::::
backscattering

:
coefficients are well correlated with a slope of 1.063 ± 0.016 and a Pearson correlation coefficient

of 0.925. This consistency between LIDAR and COBALD sensor reflects a good data quality of both methods and proves that

LIDAR can provide reliable and vertical profiles of aerosol particles with high spatial-temporal resolution.385

Profiles of backscatter coefficients from LIDAR for integration over 1 hour (grey dash line) and sliding 5-minute merged

backscatter coefficients (green line) as well as the vertical profile of in-situ backscatter coefficient measured by balloon-borne

COBALD (blue line) on July 12th, 2018 at the Jülich research center (left). Correlation between LIDAR merged backscatter

coefficients and balloon-borne COBALD backscatter coefficients (right).
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Figure 9.
:::::
Profiles

::
of
::::::::::::

backscattering
::::::::
coefficients

:::::
from

::::::
LIDAR

::
for

:::::::::
integration

::::
over

:
1
::::

hour
:::::

(grey
::::
dash

::::
line)

:::
and

::::::
sliding

:::::::
5-minute

::::::
merged

::::::::::
backscattering

:::::::::
coefficients

::::::
(green

::::
line)

::
as

::::
well

:::
as

:::
the

::::::
vertical

:::::
profile

:::
of

:::::
in-situ

::::::::::
backscattering

::::::::
coefficient

::::::::
measured

:::
by

:::::::::::
balloon-borne

:::::::
COBALD

::::
(blue

::::
line)

:::
on

:::
July

::::
12th,

::::
2018

::
at

:::
the

::::
Jülich

:::::::
research

:::::
center

::::
(left).

:::::::::
Correlation

::::::
between

::::::
LIDAR

::::::
merged

:::::::::::
backscattering

:::::::::
coefficients

:::
and

::::::::::
balloon-borne

::::::::
COBALD

:::::::::::
backscattering

::::::::
coefficients

::::::
(right).

4 Conclusions390

This paper presents results of aerosol spatial-temporal distribution and optical properties measured by a scanning aerosol

LIDAR, a radiosonde with a backscatter sensor, an OPC-N3 on a UAV, and a comprehensive set of ground level in-situ mea-

surements. Modern aerosol characterisation methods including remote sensing and in-situ methods helped us better understand

the aerosol physical properties and build a bridge between remote sensing and these in-situ methods. This paper focuses on the

comparison of aerosol measurement between LIDAR retrievals and in-situ measurements at ground level, in the troposphere,395

and in the stratosphere, thus validating LIDAR retrievals at all altitude levels.

The comparison of ground-level in-situ extinction coefficients with LIDAR-derived ones shows that Fidas200 underestimated

particle number concentration by a factor of 2-10 at the diameter range between 0.25 µm and 0.5 µm, thus causing the total

extinction calculated from this size distribution to be systematically lower than that from LIDAR retrievals by a factor of 4.70

± 1.49. The extinction coefficient calculated from the Fidas200 aerosol size distribution corrected by SMPS size distribution400

shows good agreement with LIDAR-derived extinction coefficient with a slope of 1.037 ± 0.015 and a Pearson correction

coefficient of 0.878. The comparison also shows that the undercounting of aerosol particles between 0.25 µm and 0.5 µm

is the main reason for the large discrepancy between LIDAR retrieval and ground-level in-situ Fidas200 measurements. In
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addition, a comparison between LIDAR and UAV shows good agreement in boundary layer height measurements and both

methods show a similar trend as the ERA5 boundary layer height evolution. The OPC-N3 aboard UAV shows a similar aerosol405

vertical distribution and comparable backscatter
:::::::::::
backscattering

:
coefficients as LIDAR measurement. However, the backscatter

::::::::::::
backscattering coefficients calculated from OPC-N3 were unstable and large uncertainties still remained for different flights

most likely due to the effect of UAV cruising on OPC-N3 sampling. Adapting the inlet design of the OPC may improve the

data quality for future measurements. Finally, the backscatter from balloon-borne COBALD measurement shows very good

agreement with the backscatter retrieved from LIDAR measurement if compared with 5-minute resolution LIDAR data with a410

slope of 1.063 ± 0.016 and a Pearson correlation coefficient of 0.925. This consistency between LIDAR and COBALD sensor

validated our LIDAR retrievals and proves that LIDAR can provide reliable and high-resolution vertical profiles of aerosols.

:::
And

::::
this

::::::::::
comparison

:::::::::
highlights

:::
the

:::::::::::::
complementary

:::::::::
advantages

:::
of

:::::
lidar’s

::::::::::
continuous

:::::::::::
measurement

::::::::
capability

::::
and

:::::::::
COBALD

:::::
in-situ

:::
two

:::::::::
wavelength

::::
data

:::
for

:::::::::::
characterising

::::::
aerosol

::::::::
particles

::::
from

::::
near

::::::
ground

::::
level

:::
up

::
to

:::
the

::::::::::
stratosphere.

:
In conclusion, the

retrievals from scanning aerosol LIDAR measurements show good agreement with in-situ measurements at all altitude levels415

and these LIDAR measurements can also used as reference for other low cost in-situ measurements.
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as the code "single calculus chain" (SCC) provided by EARLIENT https://www.earlinet.org/index.php?id=earlinet_homepage, last access:

14 February 2023 and public available. The Mie code used in this paper is available via github repository https://github.com/jleinonen/

pymiecoated, last access: 14 February 2023.420
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