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Abstract. Three independent particulate matter (PM) mass concentration measurements and
their long-term (2005-2020) trends were compared at the Station for Measuring Ecosystem—
Atmosphere Relations (SMEAR |1, Hyytiala, Finland). The different methods (gravimetric
method with a cascade impactor, Synchronized Hybrid Ambient Real-time Particulate
Monitor (SHARP; only PMyo), and calculated PM concentration from combined Differential
Mobility Particle Sizer (DMPS) and Aerosol Particle Sizer (APS) particle number size
distribution data) showed good correlation (Pearson’s correlation coefficient approximately
0.8) in all size classes (PM1, PM2sand PMzo). The mass concentrations in all PM classes
were the highest in summer and the lowest in autumn and winter. Statistically significant
(Mann—Kendall test) declining annual trends were observed in DMPS+APS and impactor
data in all size classes, ranging from -0.021 to -0.036 pg m=y*. While DMPS+APS method
indicated statistically significant decline also in all seasons, the decline in impactor data was
statistically significant only in spring and winter. SHARP data could not be used for trend

estimation due to the change in inlet heating temperature, affecting the measured PM1o
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concentrations. Seasonally, the decline was smallest in summer, which follows the trends
observed also in SO2 and NOy concentrations. The results underline both the summertime
dominance of biogenic sources for the aerosol mass concentration in the rural boreal forest
environment and the reduction of anthropogenic pollution due to the EU level restrictions for

improved air quality.

1 Introduction

Particulate matter (PM) concentrations are monitored worldwide, because they are connected
to health effects, such as asthma and cardiovascular diseases, and premature deaths (Pope et
al., 2003; Shiraiwa et al., 2017; WHO, 2021). The increased knowledge regarding the
relationship between air pollution and mortality have resulted in air pollution regulations,
which additionally aim to decrease inequality related to air pollution exposure (Wang et al.,
2017; WHO, 2021). Besides the adverse health effects, aerosol particles can also scatter or
absorb radiation and participate in cloud formation and processing, thus affecting the Earth’s
climate (IPCC, 2021). While the overall effect of aerosol particles on climate is considered to
be cooling, radiative forcing due to aerosol particles and especially due to aerosol-cloud—
radiation interactions is uncertain (IPCC, 2021).

PM measurements are divided into size classes based on the aerodynamic diameter of the
particles: PM1, PMz2s, and PM1o with upper maximum diameters of particles 1 pm, 2.5 pum,
and 10 pm, respectively. The PM mass concentration in these classes is the total mass of
particles below the limiting size. The size of aerosol particles is a critical parameter, both in
terms of their climate (e.g., Poschl, 2005; Dusek et al., 2006) and health effects
(Schraufnagel, 2020). In principle, the smaller the particles are, the deeper they can penetrate
in the human respiratory system and thus end up also in other organs than lungs (Pope et al.,
2003; Maynard & Kuempel, 2005). The smallest particles have only a minor contribution to
the aerosol mass concentration, but they dominate the particle number concentration. In
climate perspective, the most relevant particles are larger than about 50-100 nm, since those
can act as cloud condensation nuclei as well as scatter or absorb radiation (IPCC, 2021).
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Aerosol particles have both natural and anthropogenic sources. Additionally, particles can be
transported over hundreds or thousands of kilometers, since the lifetime of PM in the
atmosphere is days to weeks, depending on the size, composition, and source region of the
particles (Seinfeld and Pandis, 2006; Manavi et al., 2025). Primary aerosol particles consist
mostly of particles from traffic and industry (e.g., black carbon (BC)), or from natural sources
(e.g., volcanic ash, sea-spray, dust, and pollen), and they contribute to all PM classes.
Secondary aerosol particles are formed in the atmosphere from gas-phase precursor vapors
(e.g. Kulmala et al., 2013). These particles eventually grow to larger sizes, contributing

particularly to the accumulation mode, and thereby to PM;.

At SMEAR I, organic aerosol (OA) from oxidized biogenic volatile organic compounds
(VOCs), most importantly monoterpenes from the surrounding forest (Rinne et al., 2005), is
the most abundant PM1 component (Jimenez et al., 2009; Heikkinen et al., 2020). The
emission rates of monoterpenes are boosted by warm temperatures (Guenther et al., 1993),
which is also observed in the OA mass concentrations (Heikkinen et al., 2021; Yli-Juuti et al.,
2021). Sulfate, another key PM1 component at SMEAR Il and globally, is formed, e.g., upon
oxidation from sulfur dioxide (SO2), mostly emitted by industry (Seinfeld and Pandis, 2006).
Nitrate aerosol mass concentrations, mostly prevalent in agricultural or urban environments,
are therefore less abundant at SMEAR 11 (Makkonen et al., 2014).

The European Union has regulated the exposure on air pollution since 2005 via air quality

directives (https://environment.ec.europa.eu/topics/air/air-quality/eu-air-guality-standards en:;

accessed: 31 Jul 2025). The air quality directives concern basic pollutants: PM, trace gases
(SO2, NO2, O3, CO, benzene, and polyaromatic hydrocarbons) as well as heavy metals (Pb,
As, Ni, and Cd). Originally legislation on PM concerned only PM3o concentration (yearly

average concentration was limited to 40 pg m3), but in 2010 target value was set for PMzs

concentration (25 pg m™ and limited to 20 pug m= in 2020).

In the end on 2024, The Ambient Air Quality Directive was revised (2024/2881), forcing
further reductions for targets values of many pollutants, including PM1g, PM25, O3, SO2, CO,
and benzene. Additionally, the new air quality directive introduces advanced measurement
parameters, such as aerosol number concentration, aerosol size distribution, BC, and
oxidative potential, to address i.a. the harmfulness of small aerosol particles. Air quality

supersite concept was implemented as well (Kuula et al., 2021), aiming to compare the health
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impacts of the ultrafine particles and PM2s in urban and rural supersites. In addition, the EU
Commission mandates measurements of ultrafine (defined as particles between 10 to 100 nm

in diameter) and BC concentrations in the vicinity of air pollution hotspots.

Several studies have already reported declining PM concentrations in Europe (Barmpadimos
etal., 2011; 2012; Cusack et al., 2012; Pandolfi et al., 2016), ranging approximately from -
0.008 PM_s trend in Po Valley, Italy (Bigi & Ghermandi, 2016) to -4.11 pg m3yrtin
(sub)urban Germany (Guerreiro et al., 2014). In some cases, also increasing trends have also
been measured in relation to increased emissions from, for example, household combustion
and agriculture (Guerreiro et al., 2014). Declining trends are related to the legislation on air
quality as well as improved technology in industry, traffic, and heating (Spindler et al., 2004,
Anttila & Tuovinen, 2010; Barmpadimos et al., 2011; Cusack et al., 2012; Keuken et al.,
2012). In Finland, the PM concentrations have been declining during the past decades and

generally are well below the limit values (Laakso et al., 2003; Anttila, 2020).

Techniques for measuring aerosol mass concentrations have improved remarkably during the
last decades (Van Dingenen et al., 2004; Occhipinti & Oluwasanya, 2017; Shukla &
Aggarwal, 2022). Most of the PM measurements have traditionally been done by offline
gravimetric analyses where particle size classes are separated, e.g., by impactor (Laakso et
al., 2003) or special high-volume samplers (Barmpadimos et al., 2011). The offline methods
are quite laborious as their sampling time is up to few days and weighing is done manually.
Thus, PM concentrations are nowadays more commonly measured with online techniques,
such as tapered element oscillating microbalance (TEOM) with the Continuous Ambient
Particulate Monitor and Synchronized Hybrid Ambient Real-time Particulate monitor
(SHARP) (Laakso et al., 2008; Chen et al., 2018, Waldén et al., 2010). Besides the direct
mass measurements, the particle mass can be calculated from the particle number size

distribution with assumptions regarding particles’ shape and density (NeusiiB3 et al., 2000).

The aim of this work is threefold. First, we compare the PM concentrations obtained from
gravimetric impactor, online mass analyzer SHARP and from the particle number size
distribution to explore their applicability for continuous PM measurements. Second, we
report for the first time long-term (2005-2020) measurements of PM1o, PM25and PM; at
SMEAR Il, Finland, and explore the overall concentration levels as well as selected specific

episodes. Third, we estimate the trends of the PM concentrations separately for each season
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and the impact of the EU legislation on the PM trends. Quality controlled data on aerosol
particle mass concentration in a boreal background station enable us to explore the role of
local, regional and global phenomena controlling the aerosol mass concentration in the

region. This work continues the analysis presented in Keskinen et al. (2020) with updated

datasets and revised analysis methods.

2 Methods
2.1 Measurement station

The measurements were performed at SMEAR |1, located in Hyytiald in southern Finland
(61°51°N, 24°17°E; 181 m a.s.l.; Fig. 1a). Hyytidla is a rural background measurement site
with low local anthropogenic emissions (Hari and Kulmala, 2005). A photo of the
homogeneous 60-year-old Scots pine stand surrounding SMEAR |1 is presented in Fig. 1c.
The nearest cities are Tampere (50 km southwest; 249 000 inhabitants) and Jyvaskyla (90 km
northeast; 146 000 inhabitants).

The station is equipped with instruments for continuous and comprehensive measurements of
interactions between the forest ecosystem and atmosphere (Hari and Kulmala et al., 2005).
SMEAR Il is part of the European Aerosols, Clouds, and Trace gases Research Infrastructure
(ACTRIS; Laj et al. 2024; https://www.actris.eu/, accessed 07 Aug 2025). The presented
measurements are conducted inside the canopy with total suspended particulates (TSP) or
PMyo design inlets for the different aerosol measurements on the roof of the aerosol cottage
(Fig. 1b). Winter at SMEAR |1 is defined to be from December to February (DJF), spring is
from March to May (MAM), summer from June to August (JJA) and autumn from September
to November (SON). Note that winter has January and February data from the following year.
Due to the data availability, measurements start from spring 2005 and in the end of the

measurement period winter includes only December 2020.
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Figure 1: (a) The location of SMEAR Il (© OpenStreetMap contributors 2020. Distributed
under a Creative Commons BY-SA License), (b) cottage for aerosol instrumentation, and (c)
a photo of the surrounding region around SMEAR |II.

2.2 Weighing-based mass measurements with cascade impactor

PM measurements with gravimetric cascade impactor started in late 1990s at SMEAR Il. The
impactor has an unheated TSP inlet with stainless-steel tube, placed at 5 m height above the
ground. The cascade impactor has three stages with impactor cut points at 10 um (PMyo), 2.5
pm (PMz;s) and 1 um (PM3) (Dekati PM10 impactor) (Berner and Luerzer, 1980). The
sample air flow rate during collection is 30 I min™. Collection substrates are 25 mm
polycarbonate membranes (Nuclepore 800 203) without holes. At the last stage there is a 47
mm Teflon filter with 2 um pore size (R2P J047) from Pall Corporation. To prevent the
bouncing back of the particles from the collection substrates, the membranes are greased with
Apiezon L vacuum grease diluted in toluene. The impactor samples are collected for two to
three days, before the filters are taken to a clean laboratory room, where they are dried in



174
175
176
177
178
179
180
181
182
183
184
185
186
187

188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

laminar flow hood for at least two hours before weighting to get the mass distribution. The

samples are stored in a freezer for occasional further analyses.

2.3 Online mass measurements with SHARP

The Synchronized Hybrid Ambient Real-time Particulate Monitor (SHARP, Thermo
Scientific, Model 5030) is a real-time particulate monitor measuring at 1 s time resolution
(Goohs et al., 2009). SHARP combines light scattering photometry and f—ray attenuation for
continuous PM1o measurement. In SHARP the light scattering signal (nephelometer) is
automatically calibrated against the beta attenuation mass sensor. The sample line inlet is
placed on the roof of the cottage at 6 m height above the ground level and its flow rate is 16.7
I min. The sample line is heated to reduce the humidity of the sample air. The temperature
was fixed to 45 °C until August 2016 and to 35 °C after that. The sensitivity of the instrument
was calibrated regularly with a specific foil. Sampling with SHARP at SMEAR |1 started in
2012.

2.4 Aerosol mass derived from the particle size distribution

The aerosol mass concentration for different size classes PM1o, PM25sand PM; can also be
estimated by combining the number size distributions measured with Differential Mobility
Particle Sizer (DMPS) and Aerodynamic Particle Sizer (APS) and calculating the mass by
assuming that the particles are spherical and have a constant density. The instrument set-ups
for DMPS and APS are described in detail by Aalto et al. (2001). Briefly, the twin-DMPS
consists of a long and a short Vienna type Differential Mobility Analyzers (DMA) and two
condensation particle counters (CPC; TSI 3025 and TSI 3775). The DMPS inlet is placed on
the roof of the cottage at 8 m height and APS inlet at 5 m above ground level. The DMPS and
APS systems provide aerosol number size distribution with a 10 min time resolution. The
APS inlet line is heated to 35 °C, similarly as the SHARP inlet line. In the DMPS system, the
sheath flow is dried with a silica diffusion dryer. The relative humidity of the sheath flow was
kept below 40 %. The calibrations of both instruments are checked regularly using

polystylene latex spheres.

At SMEAR |1, the DMPS measures the aerosol number size distribution in the electrical
mobility equivalent diameter range of 3-1000 nm (Aalto et al., 2001). The APS (TSI 3320)
measures the aerodynamic particle size distribution of particles with aerodynamic diameter

within the range of 0.5-20 um (Peters et al., 2006). To have comparable particle size
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distributions, we converted the aerodynamic diameter (da) of the APS to mobility equivalent

diameter (dm):

dm :J%da' (1)

where pp is the density of the particle and po is the unit density of the particle (1 g cm). The
density of the particles is assumed to be 1.5 g cm™ (Saarikoski et al., 2005; Kannosto et al.,
2008), but we additionally calculated the mass concentrations using 1.1 and 2.0 g cm™
densities, which are the minimum and maximum densities of accumulation mode sized
particles at SMEAR Il (Kannosto et al. 2008) to understand the importance of constant
density assumption to the particle mass. The mass of the particles measured with
DMPS+APS is calculated as:

m= %ppndfn. 2

The mass concentrations (PM1, PM2sand PMio) were then calculated by integrating over the
corresponding size range:
i um

_ 0.6 pm
PMi= fo um  1VDMPS " Mpmpsddmy + fo.6 pm

NAPS " Mppsddpy 3
In practice, we utilized DMPS data from 0.003 to 0.6 pum and APS size distribution from 0.6
pm to 1 pm, 2.5 um or 10 um, depending on the mass fraction in question. Typical size
distributions for different seasons are presented in Fig. 2.
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Figure 2: Seasonal median number size distributions for 2005-2020 at SMEAR Il measured
with a combination of DMPS and APS with a constant density assumption. The dash-dotted
line indicates the crossover size between the instrument data to determine integrated mass

concentrations.

2.5 Ancillary data

SO, and NOyx were measured at 16.8 m height above ground level at SMEAR |1 with gas
analyzers by Thermo Fisher Scientific Inc., USA. SO, was measured with pulsed
fluorescence technique, using model TEI 43CTL until September 2010 and model TEI 43i-
TLE after that. NOx concentration was measured with TEI 42CTL (molybdenum converter)
until February 2007, then with TEI 42CTL (photolytic converter) until April 2011, and after
that with TEI 42iTL (photolytic converter).

Monoterpene concentration was measured with quarupole Proton Transfer Reaction Mass
Spectrometer (PTR-MS; lonicon, Austria). We used concentration measured at 16.8 m
height. The measurement setup is described in Taipale et al. (2008) and Rantala et al. (2014).

Equivalent black carbon (eBC) concentration was derived by filter-based optical instruments:
Aethalometer (Magee Scientific, model AE31) in years 2006-2017 and Multi-Angle
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Absorption Photometer (MAAP; Thermo Fisher Scientific, model 5012) in years 2013-2020.
The correction procedure for AE31 data at SMEAR 11 as well as the measurement setup of
AE31 and MAAP are described in detail in Luoma et al. (2021). The AE31 data were
corrected by using a correction algorithm described in Virkkula et al. (2007) and using a
multiple scattering correction factor of 3.14, which was derived by comparing the AE31 to
MAAP. To derive the eBC concentration from the measured absorption coefficient, a mass
absorption cross section values of 6.6 and 4.78 m? gt were used for MAAP at wavelength
637 nm and AE31 at wavelength 880 nm, respectively.

Air mass origins were calculated using Hybrid Single-Particle Lagrangian Integrated
Trajectory model (HYSPLIT) (Stein et al., 2015). The arrival height of the trajectories was
100 m, and they were calculated 96 h backwards in 1 h resolution. The trajectories were
divided into three sectors as described in Réty et al. (2023). Clean sector (Fig. S5e) represents
area with minor anthropogenic contribution, while European and Eastern sectors represent
more pollutant air mass source areas (Niemi et al., 2009; Riuttanen et al., 2013). Trajectory
was classified into certain sector when it spent at least 90 % of the time in that sector,

otherwise it was classified as mixed.

2.6 Correlations, bivariate fitting and long-term trend estimation

The Pearson’s correlation coefficients between the mass concentrations from different
instruments were calculated in Matlab, along with bivariate fitting (Cantrell, 2008). Before
the analysis, we removed clear outliers that were further than 6 scaled median absolute
deviations (MAD) away from the median using the Matlab built-in function isoutlier. The
procedure was done for the whole dataset at once, i.e. without regarding for instance seasonal
dynamics, but separately for each instrument and PM size. The limit was determined using
visual inspection. About 1.5 % of the data were removed. When comparing DMPS+APS and
SHARP with the impactor data, we calculated 2-3 days’ cumulative aerosol mass
concentration to make DMPS+APS and SHARP measurements comparable to the impactor

data time resolution.

The statistical significance of long-term trends in linear scale were calculated using the
mannkendall function for Matlab (v1.1.0, 10.5281/zenod0.4495589). We applied the seasonal

3PW method, which utilizes three pre-whitening methods for the trend estimation (Hirsch et

10
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al., 1982). Pre-whitening methods by Kulkarni and von Stroch (1995) and Yue et al. (2002)
remove lag-1 autocorrelation and autocorrelation on detrended data, enabling to determine
the statistical significance of Mann-Kendall test reliably; of these the one with higher value is
reported. Variance-corrected trend-free pre-whitening method by Wang et al. (2015) is used

for calculation of Sen’s slope, which leads to more accurate trend analysis (Collaud Coen et

al., 2020).

3 Results and discussion
3.1 Comparison between the mass measurement methods

Here, we present the comparison between the different aerosol mass measurement techniques
at SMEAR 11 (Fig. 3 and S1a). We found that the data from the different mass measurement
techniques correlate well, with the correlation coefficients R>0.8 for all the measurements
except between SHARP and impactor for which R=0.74 (Table 1). Thereby, the correlation
was lower between the two direct mass measurements, SHARP and impactor, than between
DMPS+APS derived and impactor or SHARP measurements, even though with the
DMPS+APS method we had to assume constant density and spherical shape of the particles
in the mass concentration calculations. In reality, the particle composition, density, and shape
vary between different particles (Kannosto et al., 2008; Heikkinen et al., 2020), which could

potentially lead to the higher uncertainty in the indirect DMPS+APS mass calculations.

Table 1: Correlation coefficients between different PM measurement techniques. Correlation
coefficient between SHARP and DMPS+APS in PM1o was 0.84. In all cases P-value << 0.05.

Method Impactor, PM1o Impactor, PM2.5 Impactor, PM;
DMPS+APS 0.84 0.86 0.88
SHARP 0.74 - -

To estimate the impact of selected density in DMPS+APS method, we calculated the average
mass concentrations using 1.1 and 2.0 g cm™ as lower and upper estimates of the particle
densities (Kannosto et al., 2008). The average PM mass concentrations for 2005-2020 are
presented in Table S1. The average mass concentrations calculated with 1.1 g cm™ particle
density were 7—12 % smaller compared to the mass obtained with 1.5 g cm density for

11
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density, the calculated mass concentrations were 14-17 % larger for PMio, 19-27 % for
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Figure 3: Correlation between the different mass measuring methods against impactor
measurements a) PMio from SHARP, b) PM1o from DMPS+APS, c¢) PM2s from DMPS+APS,
and d) PM: from DMPS+APS. Bivariate fit to the data is represented with a blue line and 1:1
line is black. Color is PM1 to PMyo ratio from impactor measurements and in (a) markers
differentiate the inlet heating temperature of SHARP (circle = 45 °C and plus sign = 35 °C).

The data are averaged based on the impactor time resolution (2-3 days).

Comparing Fig. 3 and Fig. S1a, it seems that the data points between SHARP and
DMPS+APS are positioned more distinctly on the 1:1 line whereas the impactor data are
scattered more towards higher concentrations in all size classes. After the inlet heating
temperature reduction in SHARP from 45 to 35 °C, the PMyg values measured by SHARP
were more comparable to those measured by impactor, except for the lowest and highest
PM1o concentrations (Fig. S2a—b). When comparing to DMPS+APS data (Fig. S2c—d),

12
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SHARP also showed slightly lower PM1o concentrations when the inlet was heated to 45 °C,
and mostly similar concentrations (within standard deviation) when inlet was heated to 35 °C.
Again, with the lowest concentrations, SHARP showed higher variability in the measured
PMyo concentrations. When excluding the lowest mass concentrations (approximately below
1.5 pg m3), with 45 °C inlet heating SHARP to impactor ratio was 0.65 and SHARP to
DMPS+APS ratio 0.85. With 35 °C inlet heating, the ratios were 0.91 and 1.0, respectively.
This indicates that the higher inlet heating temperature might have led to 15-25 % losses of
semi-volatile compounds from the sample air of SHARP.

Color in Fig. 3 and Sla is PM1to PMyg ratio from impactor measurements. In general, the
correlations between instruments were rather independent of the fractions of different particle
sizes, but in PMyo correlation with impactor (Fig. 3a—b), the scattered data points have lower
PMj to PMyo ratio. This implies that the impactor PM1o measurements were likely
overestimated in these cases since in PM1 and PMzs, as well as in the DMPS+APS
correlation with SHARP, PM1to PMyo ratio from impactor data seem to be more evenly
distributed (Fig. 3c-d and S1a). We additionally plotted correlation between monthly median
concentration of PMy and PM25 as well as PM2.s and PMyo from DMPS+APS and impactor
measurements (Fig. S1b). The figure shows that while the data from DMPS+APS is rather
well aligned with 1:1 line, the PMyo against PMs from impactor data has more scattered data
points, further implying that the impactor data might be overestimated.

In Waldén et al. (2010) different PM analyzers were tested for air quality monitoring in
Helsinki. They reported that the two tested SHARP instruments passed the equivalence tests
for PM1o monitoring while for the PM2.s measurements a calibration correction factor had to
be applied. In their instruments, inlet lines were heated to 35 °C. They also reported that
while Dekati PM10 impactor was overall indicative measurement method for PM2 s (other
sizes were not measured), it overestimated the concentrations compared to the reference

methods. For the impactor, they used 24 h sampling period with 30 | min! flow rate.

The measurement methods used in this study differ considerably from each other, and hence
they are subject to different kinds of issues in PM monitoring. The impactor data, for
example, is sensitive to any disturbances related to the weighing of the filters or evaporation

of semi-volatile material from the filters during the long sampling time. The impactor is,
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however, the only purely weighing-based mass measurement at SMEAR 1. Thus, in the next

section, we compare all the other methods against the impactor data.

3.2 PM concentrations, seasonal variation, and emission events

We explore the time series of PM concentrations to observe overall concentration levels,

seasonal differences, and specific emission events (Fig. 4 and S2). Mean values from 1991—

2002 reported by Laakso et al. (2003) are also included in the figures to compare the results

with the earlier values from SMEAR I1. To enable the comparison with the values by Laakso

et al. (2003), we present mean and median concentrations of shorter, approximately five-year
periods (2005-2010, 2011-2015, and 2016-2020) in Table 2.
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Figure 4: Seasonal median (a) PM1o, (b) PM25s and (c) PM1 concentrations measured with the
impactor as well as (d) temperature and their 25 and 75 quartile ranges at SMEAR II. The
tick marks on the x-axis are in the beginning of a year. Mean values for 1991-2002 are from
Laakso et al. (2003).

Table 2: Average (mean / median) PM concentrations measured at SMEAR 1II. Values
(mean) for 19992001 are from Laakso et al. (2003) and other values from this work. First
number in each cell is the mean for the indicated period and following numbers are seasonal

means. Unit is ug m™.

1999-2001 2005-2010 2011-2015 2016-2020 2005-2020

PMyo, impactor | 6.9 5.4/4.4 58/48  44/34  45/42
-Spring 7.4 5.9/4.7 53/42 44133  42/41
-Summer 7.2 6.4/5.6 74164  58/55  55/5.6
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-Autumn 6.9 45/3.4 54/4.4 41/3.0 43/35
-Winter 5.9 47139 50/4.4 3.3/2.8 39/3.6
PMio, SHARP - - 4.213.6 4.714.0 52/38
-Spring 40/35 44/3.6 52/3.6
-Summer 49/4.4 6.0/5.5 6.5/5.1
-Autumn 3.8/3.1 4.7/3.8 4.713.7
-Winter 41/3.3 3.8/33 441/3.3
PMao,

DMPS+APS - 55/4.8 481/4.0 42134 49/4.1
-Spring 58/4.9 44139 41/3.5 481/4.1
-Summer 6.2/5.9 59/5.0 55/4.9 59/53
-Autumn 48/3.9 42133 3.8/28 43/3.4
-Winter 55/4.7 47139 35/29 47139
PM2s, impactor | 5.8 46137 4.7/3.8 35/28 43/3.4
-Spring 6.4 50/4.1 42135 34126 4.2/3.3
-Summer 59 52/4.6 59/5.0 45/3.7 52/4.4
-Autumn 5.7 3.6/27 42134 3.3/23 37128
-Winter 5.1 44135 45/3.8 29/2.4 4.0/3.2
PM2s,

DMPS+APS - 4714.0 41/3.4 3.6/3.0 4.2/3.6
-Spring 481/4.2 3.713.2 34129 41/3.4
-Summer 5.1/4.8 49/4.2 46/4.2 49/45
-Autumn 3.9/3.2 3.5/2.7 3.3/24 3.6/28
-Winter 51/43 43/3.6 3.3/28 4.3/3.6
PMy, impactor 4.3 3.8/3.0 3.8/29 27121 34127
-Spring 4.4 42134 3.3/2.7 2.6/2.0 34127
-Summer 5.6 4.413.7 49/4.0 35/3.0 42135
-Autumn 3.6 28121 3.3/23 2.411.6 2.812.0
-Winter 3.8 3.7/28 3.7/3.0 2.311.7 3.3/25
PM;y,

DMPS+APS - 3.8/3.3 3.3/26 3.0/24 34128
-Spring 39/33 29/25 2.812.3 3.3/2.6
-Summer 42139 41/3.6 3.8/33 4.0/3.6
-Autumn 3.0/23 2.711.9 2.6/1.8 28121
-Winter 43/3.4 35/28 2.712.0 35/28

387

388 The PM concentrations in all size classes are typically highest in summer and lowest in
389 autumn (Table 2). In summertime, the surrounding boreal forest is a large source of organic
390 compounds (Fig. S4c), which contribute to the aerosol load as shown already in several
391 studies (e.g. Heikkinen et al., 2020; 2021; Yli-Juuti et al., 2021). Due to the temperature
392 dependent activity of the forest, warm spells and heatwaves increase the VOC emissions,
393 suchas in 2018 (Fig. S4c; Neefjes et al., 2022), which is also evident in the PM data in all
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size classes (Fig. 4). Furthermore, pollen and other biological particles contribute especially
to coarse mode particle mass at SMEAR 11 from late spring to early autumn (Manninen et al.,
2014).

Although PM mass concentrations are generally decreasing (Fig. 4), certain events associated
with higher PM levels, such as wildfires and volcanic eruptions, can be detected. In 2006
springtime as well as in 2006 and 2010 summer forest fires in eastern Europe increased the
measured PM concentrations at SMEAR 11 (Fig. 4) as seen also in Anttila et al. (2008) and
Leino et al. (2014). The growing seasons of 2006 and 2011 were exceptionally warm at
SMEAR II based on the analysis spanning years 19962017 (Pysarenko et al., 2022), which
is also visible in PM concentrations (Fig. 4), but the relatively high PM concentrations in
spring 2010 and 2011 can also be caused by the plume of ash and SO from the erupted
Eyjafjallajokull (Thomas et al., 2011; Gudmundsson et al., 2012; Flanner et al., 2014) and
Grimsvotn (Cooke et al., 2011; Tesche et al., 2012) volcanoes in Iceland. The considerably
higher PM concentrations in autumn 2014 were affected by eruptions of Bardarbunga
(Gislason et al., 2015) and Holuhraun (llyinskaya et al., 2017) volcanoes in Iceland, which

Heikkinen et al. (2020) also noticed in the sulfate aerosol and SO concentrations.

During the coldest winters 2009-2010 and 2010-2011, the measured PM concentrations were
high (Fig. 4 and S2). These years were also associated with high concentrations of SOz, NOx,
and eBC (Fig. S4). Residential heating is known to be a source of particulate emissions as
wood is burned for heating (Spindler et al., 2004; Viana et al., 2008; Barmpadimos et al.,
2011). However, the coldest winter temperatures are typically measured in Finland when air
is transported from the eastern continental areas (Sui et al., 2020). These, and particularly
southeastern, areas are also a source of atmospheric pollutants (Niemi et al., 2009; Riuttanen
et al., 2013). Hence, rather than being local, pollutants can also be advected to Finland. Air
mass source area analysis shows that winters with higher fraction of easterly air masses (Fig.
S5) were colder and had also higher PM levels, although we acknowledge that this analysis
does not reveal the actual source of the measured PM. Further, boundary layer height
dynamics affect the measured concentrations, because shallow boundary layer heights during
cold winter days can concentrate the anthropogenic pollutants close to the surface (Stull,
1988; Sinclair et al., 2022).
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Overall, the air quality at SMEAR Il was very good during our measurement period from
2005 to 2020. The average concentrations measured by impactor were 4.5, 4.3, and 3.4 ug m
3 for PM1o, PM2s, and PM1, which are in line with PM25 concentrations measured in 2002
and 2010 at background stations in Sweden and Norway (average PM. s ranging from 4.3 to
9.9 ug m (Cusack et al., 2012)) and generally lower than at other background stations in

Europe (average PM2s ranging from 5.5 to 26.2 ug m (Cusack et al., 2012)).

3.3 Long-term trends

The measured PM concentrations show a declining trend during the measurement period
from 2005 to 2020 (Fig. 4). Compared to the values reported by Laakso et al. (2003) for
1999-2001 (6.9, 5.8, and 4.3 pug m™ for PMio, PM2s, and PMy, respectively), the values in

2016-2020 are almost 40 % lower in all size classes (Table 2).

While the overall PM concentrations are decreasing, the different mass measurement methods
gave slightly inconsistent results: DMPS+APS method shows constant decline in PM
concentrations, whereas the impactor data shows slight increase in all PM sizes for 2011
2015 period for all seasons but spring (Table 2). The clearest difference between the impactor
and DMPS+APS data seems to be the steadier decline in autumn concentrations in
DMPS+APS data (Fig. 4 and Fig. S2b-c). Hence, despite the discrepancies the methods give

generally comparable results.

SHARP data shows increased PM1o concentration between 2011-2015 and 20162020 for all
other seasons except for winter, but this is likely explained by the decreased inlet heating
temperature, changed between the two periods (Fig. S3). Hence, no further conclusions of the
trend in SHARP data can be drawn, even though generally the concentrations measured by
SHARRP follow the concentrations measured by DMPS+APS method (Fig. S2a-b).

Long-term trends are shown seasonally for each size class PM1o, PM25, and PM1 using
impactor (Fig. 5, S6, and S7), and DMPS+ APS data (Fig. S8-S10). Calculated seasonal and
annual trends are presented in Table 3. On seasonal scale, decreasing trends, ranging from -
0.007 to -0.066 pg m3yL, are observed in each measured size class, while on annual scale,
the trends vary between -0.021 and -0.036 pug m=yL. In general, the largest decreases in all

size classes are observed in winter, whereas the decrease is the lowest in autumn. For the
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impactor method, the decline is statistically significant at 95 % level in spring and winter, but
not in summer and autumn. However, when calculating the trends from DMPS+APS data
using 6-hour averages, the Mann-Kendall test revealed a statistically significant decrease in
all size classes and seasons (Fig. S8-S10).
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Figure 5: PM; concentration with the impactor method in (a) spring, (b) summer, (c) autumn,
and (d) winter. Red horizontal line represents the median, the distance between the box edges
shows the interquartile range, and whiskers extend to 1.5 times the interquartile range.
Outliers are not shown. Slope represents trend calculated using Sen’s slope and statistical
significance is calculated using Mann-Kendall test. The trends were statistically significant in

spring and winter, but not in summer and autumn.

The seasonal differences in PM trends follow the trends observed also in SO, and NOx
concentrations (Fig. S11 and S12), as well as in eBC (Fig. S4d-e). Further, Luoma et al.
(2019) showed that the relative decline of light absorbing aerosol is faster than the light
scattering aerosol at SMEAR 11, and that the decline was strongest in spring and winter.
Hence, the results imply that the decrease in anthropogenic pollutants drive the decrease in

PM, which has been seen also elsewhere (e.g. Yttri et al., 2021). On the other hand, the lower
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summer and autumn time decline can also be explained by the high fraction (more than 50 %)
of OA from the surrounding boreal forest in the PM mass concentration at SMEAR 11
(Heikkinen et al., 2020). Further, in Li et al. (2023) the concentrations of organic precursors
have even been shown to have an increasing trend at SMEAR II.

Table 3: Annual and seasonal trends in 2005-2020 PM concentrations at SMEAR 1. Results
from the DMPS+APS method are calculated from 6 h averages while impactor data has
original time resolution (averaged over 2—3 days). Results, which are not statistically
significant in 95 % level, are marked with *. Unit is ug m=y* except the second number in

annual trends which is % y.

Method Spring Summer Autumn Winter Annual
PMus Impactor -0.053 -0.018* -0.017* -0.056 -0.035/-0.59
DMPS+APS -0.038 -0.012 -0.016 -0.066 -0.032/-0.56
oM Impactor -0.059 -0.020* -0.012* -0.057 -0.034/-0.70
DMPS+APS -0.034 -0.013 -0.009 -0.061 -0.028/-0.56
oM Impactor -0.064 -0.018* -0.013* -0.059 -0.036/-0.89
DMPS+APS -0.027 -0.013 -0.007 -0.042 -0.021/-0.52

In winter, biogenic OA precursors have minima in their concentrations (Fig. S4c), as shown
also in Heikkinen et al. (2020), and consequently the collected PM originates mostly from
anthropogenic sources, such as traffic, industry, and different combustion processes
(Forsberg et al., 2005; Anttila & Tuovinen, 2010) as is indicated by the winter maxima in
eBC concentrations (Fig. S4d-e). Moreover, many gaseous pollutants, emitted from
anthropogenic processes and contributing to atmospheric chemistry or aerosol processes,
such as SO2 and NOy, have maxima in their seasonal cycle in spring and winter (Fig. S4a-b;
Lyubovtseva et al., 2005; Anttila & Tuovinen, 2010; Riuttanen et al., 2013; Heikkinen et al.,
2020), further affirming the contribution of anthropogenic pollution to the observed trends.
Additionally, Banerji et al. (2025) showed that at SMEAR I, light absorbing aerosol peak in
winter, being thus associated with e.g. black carbon from anthropogenic activities, while
aerosol scattering peaks in summer and winter, being thus likely associated with organic
aerosol in summer and sulfates in winter. They also found an increasing trend in single
scattering albedo, indicating that the relative proportion of light absorbing aerosol decrease.

Luoma et al. (2019), in turn, reported decreased light scattering and absorption with a
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simultaneous increase in light backscattering fraction and scattering Angstrom exponent at

SMEAR I, indicating reduction in large particle concentration.

The seasonal difference in PM sources is visible also in the ratios between PM; to PM2s and
PM25 to PM1o plotted against temperature bins (Fig. 6) as well as in monthly PM1 to PM1o
ratio (Fig. S13). The fraction of smaller particles increases in cold and warm temperatures
(Fig. 6), which could be attributed to anthropogenic pollution during winters and secondary
aerosol formation in summer, which is also visible in aerosol PM; to PMyo aerosol light
scattering coefficient (Luoma et al., 2019). In winters, nearly 80 % of PM1 consists actually
of PMq (Fig. S13).

The PM; to PM25 and PM2s to PMyo ratios exhibit small, but statistically significant at the 95
% confidence level, negative trends (Fig. S14). The decline is particularly attributed to the
decline in PM1 concentration due to decreasing anthropogenic precursor concentrations since
the it is larger in PMy to PM2 s ratio. Also, the annual relative trends from the impactor data
are largest for PM1 (Table 3). Sweden at two regional background sites, the PM25 to PM1o
ratios in 1999-2001were 0.77 and 0.8 (Forsberg et al., 2005), which is in line with the
measurements from SMEAR 1I. In 1999-2001 dataset, the PM25 to PMyo ratio at SMEAR 11
was 0.86 in winter and spring, and 0.82 in summer and autumn (Laakso et al., 2003) while in
2020, the ratios fell below 0.8 (Fig. S14) also highlighting the change in aerosol population at
SMEAR II.
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Figure 6: PM; to PM2s and PM2s to PMyo ratios in different temperature bins using impactor
data. Horizontal line represents the median, the distance between the box edges shows the
interquartile range, whiskers extend to 1.5 times the interquartile range, and data points even

further from the median are presented with circles.

Generally, the PM concentrations have been observed to decrease in Europe (Spindler et al.,
2004; Barmpadimos et al., 2011; Keuken et al., 2012; Guerreiro et al., 2014). However, in
Guerreiro et al. (2014) non-significant positive trends in PM1o (2002—-2011) and PM2.5 (2006—
2011) were also observed at Finnish rural background sites. In Anttila & Tuovinen (2010)
both increasing and decreasing trends were detected in a dataset from 1994 to 2007 from
Finland, which they linked to different measurement environments (urban, suburban, and

industrial). Table 4 lists trends observed at different measurement sites across Europe.

Table 4: Summary of PM trends in previous literature. Unit is pg m=y™ except in Anttila &
Tuovinen (2010) where the unit of the first number is pg m>month™ and the second is % yr

! Note that the trends are calculated using different methods.

PM1o PM2s Time Location Author
-0.15t0-1.2 1991-2008 Switzerland, Barmpadimos
various sites etal., (2011)
-04 -04 1998-2010 Europe, various Barmpadimos
sites etal., (2012)
-1.9 2002-2010 Spain, regional Cusack et al.,
background site (2012)
-1.8 2002-2010 Europe, regional Cusack et al.,
background sites (2012)
342t0-1.95 230t0-0.62 2002-2011 (PMio) Europe, rural Guerreiro
20062011 (PM25) background sites etal., (2014)
229t0-411 1.19t0o-1.91 2006-2011 Europe, (sub)urban  Guerreiro
background sites etal., (2014)
-0.008 to From 2005-2008 lItaly, Po Valley, Bigi & Gher-
-1.717 to 2015 various sites mandi, (2016)
-0.13t0-2.83 -0.26 to -2.03 2004-2014 Spain, various sites  Pandolfi et al.,
(2016)
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0.024 to 19942007 Finland, various Anttila &
-0.054 sites Tuovinen,
/-0.3t0-2.8 (2010)

The trends measured at SMEAR 11 (Table 3) are similar than reported previously for Finland,
but lower than the trends observed elsewhere in Europe (Table 4). One reason for this is
likely the overall lower PM concentrations at SMEAR Il compared to other locations as well
as the longer timespan. Moreover, the trends in different studies have been calculated using
different methods, such as Sen’s slope (this study; Cusack et al., (2012); Guerreiro et al.,
(2014); Paldolfi et al., (2016)), and generalized least squares regression (Anttila & Tuovinen,
2010; Bigi & Ghermandi, (2016)), and also using different data preprocessing, which can
further affect the trend estimates.

The connection between decreasing gaseous pollutant emissions and secondary aerosol
concentrations has already been noted previously (Anttila & Tuovinen, 2010; Cusack et al.,
2012; Kyro et al., 2014; Pandolfi et al., 2016; Li et al., 2023) and decreasing PM trends in
Europe have been connected to modernization of industry and heating systems as well as
technology development of vehicles (Spindler et al., 2004; Barmpadimos et al., 2011; Keuken
et al., 2012). Hence, the observed decrease in PM concentrations at SMEAR |11 is in line with
previous studies and can be connected to the emission reductions driven by air quality

legislation.

4 Conclusions

In this paper, different long-term aerosol mass concentration (PM1o, PM25, PM1)
measurement techniques were compared and reported for the years 2005-2020 from SMEAR
I1, Finland. The direct mass concentration measurements with a cascade impactor and
SHARP were compared with the mass concentrations calculated from the combined aerosol
number size distributions of DMPS and APS. The results obtained using different methods

are well comparable with the correlation coefficients of about 0.8.

The lower correlation values were connected to sampling methodologies: e.g., reducing the
inlet heating temperature of SHARP increased the correlation with the impactor.

Additionally, although impactor measurements are simple and purely based on weighing of
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filters, the impactor data showed somewhat higher concentrations than the other two
methods, especially in the PM1o size, which might stem from the difficulties related to
weighing masses down to micrograms. Any disturbances or deposited dust particles can lead
to overestimated mass concentration, which might be the reason why impactor data showed
statistically insignificant trends in summer and autumn while DMPS+APS data with similar
absolute values resulted in statistically significant decreasing trend in PM concentration. On
annual scale, both methods indicated statistically significant decreasing trends, which were
comparable with the trends observed elsewhere in Finland.

The measured masses were similar between all the methods, and hence we can conclude that
all methods were applicable for long-term PM monitoring. Yet, we acknowledge that the
comparison of PM concentrations measured with different techniques gives valuable
information for data quality control purposes, as well as for validating the applicability of the
different methods. Therefore, we encourage conducting extensive comparisons with different

methods at each measurement site.

The PM concentrations at SMEAR |1 were generally low, mostly less than 5 pg m=, which
clearly fell below the 20 ug m limit by the EU air quality legislation. The highest PM
concentrations at SMEAR |1 were measured in summer, when organic compounds from the
surrounding boreal forest contribute to the measured PM mass. Peaks observed in the PM
data can be related to transported particles from regions with e.g., forest fires or on-going

volcanic eruptions.

The measurements showed overall decreasing PM trends for all size classes and in all
seasons, although the decline was faster in PMy size class, which can be attributed to the
decrease in anthropogenic pollution due to legislation aiming for improved air quality.
Importantly, the trends were weakest in summer when natural emissions of VOCs from the
forest lead to the formation of OA. As these natural VOCs are projected to increase with
increasing temperature, it is possible that summertime OA concentrations keep increasing in
the future. Taken together with the declining anthropogenic emissions, the role of natural
aerosol particles could be anticipated to signify in the future. Overall, the results emphasize
the importance of the long-term measurements (Kulmala et al., 2023) for understanding

atmospheric aerosol mass concentrations and factors controlling them. This is a requirement
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to quantify the relative roles of natural and anthropogenic sources to PM concentrations and

ultimately to their impacts on health and climate.
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