S1 Solutions of the differential equations
S1.1 Decay function considering ventilation and deposition

The differential equation describing time behaviour of indoor LDSA concentration, when ventilation and deposition are con-
sidered, can be modified to the form of
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which means that the differential equation is not exact and an integrating factor has to be found. Fortunately, it is noticed that
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depends only on Cy,pga i, not on ¢. Thus, the integrating factor is
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Multiplying both sides of the differential equation with the integrating factor, gives a separable differential equation
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This equation can be solved by integrating over the time interval [0,¢], when the interval of indoor LDSA concentration is
[CLDsA.i,0,CLDSA,i], Where CpLpsa i 0 is the initial indoor LDSA concentration. The integration gives
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as a solution for the differential equation considering ventilation and deposition. As time approaches infinity, gradient of
LDSA concentration approaches zero and LDSA concentration approaches background concentration Cp,pga i, be resulted from
background source. Consequently, from the original differential equation, the background source Sy psa can be formulated as
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It has to be noted that this step includes the assumption of a constant dilution coagulation coefficient for LDSA. Using the
equation of background source, the auxiliary variable b can be expressed as
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S1.2 Decay function considering ventilation, deposition, and coagulation

The differential equation describing time behaviour of indoor LDSA concentration, when ventilation, deposition, and coagula-
tion are considered, can be modified to the form of
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From this, can be read that

2
M = DrpsaCrpsa,i + KLpsaClpga i — SLDSA,

N =1.
Then

oM ON
—— =D 2K, C i #Z0=—,
9Crpsas LDsA + 2K1.psaCLpsa.i # ot

which means that the differential equation is not exact and an integrating factor has to be found. Fortunately, it is noticed that
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Multiplying both sides of the differential equation with the integrating factor, gives a separable differential equation
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This equation can be solved by integrating over the time interval [0,¢], when the interval of indoor LDSA concentration is
[CLDsA.i,0, CLDsA i), where CLpsa i o is the initial indoor LDSA concentration. The integration gives
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) and auxiliary variables z =

variable z can be solved as
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Substituting z = , LDSA-concentration can be solved
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Using an auxiliary variable b = \/ D3 s +4K1psa S, this can be expressed as
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As time approaches infinity, gradient of LDSA concentration approaches zero and LDSA concentration approaches back-

ground concentration Cppsa i be resulted from background source. Consequently, from the original differential equation, the
background source Sppsa can be formulated as
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It has to be noted that this step includes the assumption of constant dilution and coagulation coefficients for LDSA. Using the
equation of background source, the auxiliary variable b can be expressed as
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Finally, using this, LDSA-concentration can be written as
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S2 Floor plans of the measurement sites

Table S2.1. Description of the acronyms used in floor plans.

Acronym Definition
BR Bedroom
H Hall
K Kitchen
L Living room
S Sauna
STOR Storage
TERR Terrace
UTRM Utility room
WC Toilet/bathroom
WIC ‘Walk-in closet
N CASE |
Building type Apartment
BR Floor area (m?) 22
. Area of cooking space (m?) 16
 — Volume of cooking space (m®) | ~40

Ventilation system

Mechanical supply and exhaust

Extra ventilation during cooking

No

Location type

Urban

Stove
. Living room sensor
() Outdoor sensor

Figure S2.1. Floor plan and description of the apartment used in Case I.
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CASE Il

Building type Terraced house
Floor area (m?) 85,0

Area of cooking space (m?) ~45

Volume of cooking space (m®) | ~150

Ventilation system

Mechanical supply and exhaust

Extra ventilation during cooking

Yes

Location type

Suburban

Stove

. Living room sensor

Outdoor sensor

Figure S2.2. Floor plan and description of the apartment used in Case II
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CASE Il

Building type Terraced house
Floor area (m?) 52.5

Area of cooking space (m?) ~33

Volume of cooking space (m®) | ~86

Ventilation system

Mechanical supply and exhaust

Extra ventilation during cooking

Yes

Location type

Suburban

Stove
. Living room sensor

) Outdoor sensor
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Figure S2.3. Floor plan and description of the apartment used in Case III
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CASE IV
Building type Detached house
Floor area (m?) 128,8
Area of cooking space (m?) 57
Volume of cooking space (m®) | ~180
Ventilation system Mechanical supply and exhaust
Extra ventilation during cooking | Yes
Location type Suburban
Stove

. Living room sensor
~) Outdoor sensor

Figure S2.4. Floor plan and description of the apartment used in Case I'V.
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S3 Fits of the decay function ignoring coagulation
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Figure S3.1. The fits and the fitting parameters of the decay function Eq. (8), not considering coagulation, in Cases I (a), II (b), III (c), and
IV (d). Cooking events and mixing phases are highlighted.
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