
Review of Global fields of daily accumulation-mode particle number concentrations using 
in situ observations, reanalysis data and machine learning by Ovaska et al.  

Accumulation mode aerosols are important climatologically because of their interactions with 
radiation and clouds. Measurements of accumulation mode number concentrations from 
satellites are inferred from radiative properties (e.g., extinction) and only available in cloud-free 
regions which reduces our ability to constrain aerosol-cloud interactions in climate models. 
Observations from ground or airborne instruments are spatially and temporally limited but of 
high fidelity and useful for testing satellite retrievals and/or model simulations. The rise of 
complex machine learning (ML) approaches offers the opportunity to create diverse datasets 
that relate observed aerosol number concentrations to more widely observed/simulated 
meteorological phenomena. In this paper, Ovaska et al use two established explainable-ML 
approaches to relate observed accumulation number (N100) concentrations to coincident 
reanalysis fields and thereby create a high-coverage N100 dataset. The methodology accounts 
for various confounding factors which may bias results including the paucity of surface 
measurements which are mostly Europe-confined, and the varying-lengths of observational 
datasets. 

The paper is very well written, timely, important and a provides a benchmark method for 
calculating aerosol number concentrations from predictor variables using ML methods. As 
someone with limited ML knowledge I particularly appreciate the comprehensive Methods 
section which highlights the complexities involved in ML training and gives critical details on 
reproducing results and applying these approaches to similar scenarios. The justification for 
choosing both ML methods (L107) is also very useful to an ML novice. While not an ML expert 
albeit as someone with a statistical background, the decisions made by the authors as 
documented in Sections 2-4 intuitively make sense. The results are also intuitive – the models 
show skill over stations with long observation datasets / close proximity to other stations, and 
reduced skill elsewhere. I have some minor comments which I think would improve the 
manuscript but otherwise I think the paper is an excellent fit for the journal. 

General comments 

G1: The greatest source of uncertainty I think is in the spatial distribution of the surface 
observations (Fig. 1) which is very Europe-centric. Additionally, all/most of the surface sites are 
over land which diminishes the skill at predicting over oceans where the sources of aerosol are 
frankly very different to over land. I think the manuscript should be re-framed as a “Global land 
network of accumulation number” rather than global as there is limited evidence of skill over 
the oceans. I do not think this diminishes the paper but is more reflective of the results and 
limitations of the study. If the authors can provide some evaluation of concentrations over the 
ocean, even if rudimentary, that would be useful 

This comment is very accurate, and we certainly acknowledge the issue of strong 
variability in spatial representativeness of the utilised data sets. It is true that evaluating 
against observations over the oceans (and other underrepresented environments) 
would be useful in demonstrating clearly the current uncertainties. However, including 
more data at this stage would require a thorough consideration of which data is good for 
the comparison and which data set we should utilise and which not, would result in a 
considerable amount of extra work, and would also add further material to an already 



quite lengthy manuscript. However, in the future we aim to extend the data in a follow-
up manuscript where more data sets from marine and polar areas are included. 

 We also hesitate to change the title of the manuscript. While the accuracy of the 
modelled N100 fields vary between different environments, the fields themselves are 
global. We prefer to clarify the (expected) representativeness of the fields in the 
manuscript. Due to this excellent comment, we did realise that in the original version we 
did not clearly discuss the expected representativeness of our model in different 
environments. We now mention the underrepresented sections more specifically in the 
abstract (line 8 in the revised manuscript):  

Instead of “However, performance declines in underrepresented regions and conditions, 
such as clean and remote environments, underscoring the need for more diverse 
observations.” we now say: “However, performance declines in underrepresented 
regions and conditions, such as clean and remote environments including marine, 
tropical and polar regions, underscoring the need for more diverse observations.”  

We added the following paragraph to Sect. 5.4 (line 683 in the revised manuscript): 

“[For the N100 measurements, the main challenge is data availability. To train ML 
models that capture diverse environments and meteorological conditions, we require a 
broad dataset that covers a wide range of locations and time periods.] In an ideal case, 
the dataset would represent environments with different natural and anthropogenic 
emission levels extending from low to high global extremes, as well as a wide spectrum 
of different anthropogenic to natural contribution ratios. The global distribution of long-
term data sets, reflected by measurement stations utilised in this study, is clearly biased 
towards continental, anthropogenically influenced and European environments. Thus, 
the performance of our global ML models is expected to be worse in marine and tropical 
environments, as well as in the southern hemisphere and in polar regions. In addition, 
i[deally, we would have at least five years of data from each station.]” 

We also replaced the following text from the last paragraph of the manuscript (line 780 
onwards in the revised manuscript)  

“Further evaluating the performance and reliability of the global MLR and XGB models in 
different environments and conditions will require additional data. We hope future 
collaborations will provide access to a wider measurement dataset, including data from 
stations not currently included in this analysis and more data from stations already part 
of the study. Although adding new data from measurement stations does not provide a 
global reliability estimate, it will allow us to assess model performance in new 
environments and conditions with unseen data.” 

with  

“Improving and better evaluating the performance and reliability of the global MLR and 
XGB models in different environments and conditions will require additional data. We 
hope future research investments and collaborations will provide access to a wider 
long-term measurement dataset, extending especially towards marine, tropical, 
southern hemisphere and polar areas that are underrepresented in the current study. 
Although adding new data from such measurement stations does not provide a global 
reliability estimate, it will allow us to improve and assess the model performance in new 



environments and conditions with unseen data. Including longer data sets from stations 
already part of this study will also improve the models, due to capturing more variability 
in the atmospheric conditions at these sites.” 

 

G2: The CAMS fields used as predictor variables (Table 2) are predominantly gas and aerosol 
tracers in that model, with some limited data assimilation of aerosol (from satellite AOD) but as 
far as I’m aware not gases. The paper lacks a quantification of the uncertainty in these predictor 
variables at the surface sites and in general. This is not to say that the use of these predictor 
variables is wrong, but I would appreciate some quantification of the relative uncertainty in 
these variables. If the surface sites measured the variables (e.g., EMEP over Europe) that would 
be a useful way to evaluate this uncertainty. Some qualitative evaluation is provided in Sections 
5.3 and 5.4 but this should be extended. 

It is certainly correct that the uncertainties in CAMS variables cause uncertainty in our 
ML models. It is also correct that an appropriate investigation of CAMS biases at the 
measurement stations would likely quantify these uncertainties. However, detailed 
quantification of uncertainties across the different CAMS variables is beyond the scope 
of the current manuscript. The evaluation of uncertainties related to CAMS aerosol 
variables are discussed thoroughly in Block et al. (2024), as mentioned in our 
manuscript, and those related to CO and NO2 have been presented by Inness et al. 
(2019) and Langerock et al. (2024), which we mention more clearly in the revised 
manuscript (see below). Based on Langerock et al. (2024), both of these gas 
concentrations are assimilated against satellite observations, and as the aerosol 
products are assimilated against AOD determined with satellite retrievals, the 
uncertainties in these variables can presumably be determined with much less regional 
variability than the variables that are measured and assimilated with worse and more 
heterogenous spatial coverage. Due to the extensive investigation required for 
quantifying the uncertainties in the applied variables, we prefer not to do that but 
express the related uncertainties more clearly in the manuscript.   

Throughout the manuscript, we checked the use of word “bias” and changed it to word 
“uncertainty” where necessary. 

We added the following in the Methods-section (line 229 in the revised manuscript): 

“We discuss the possible effects of these and other CAMS variable related uncertainties 
in Sections 5.3 and 5.4" 

We extended section 5.4 (starting at line 702 in the revised manuscript) from  

“Regarding reanalysis data, challenges stem from various biases inherent in the CAMS 
and ERA5 reanalysis datasets. Block et al. (2024) provide a comprehensive discussion of 
the biases affecting CAMS aerosol variables, including uncertainties in polar regions 
due to limited satellite retrievals, omissions such as volcanic activity, and specific 
volcano-related biases around locations like Mauna Loa (Hawaii, USA) and Altzomoni 
(Mexico) —both of which appear as hotspots in our MLR model results. CAMS also does 
not model nitrate aerosol mixing ratios and represents hydrophilic and hydrophobic BC 
and OM mixing ratios with simplified partitioning based on emission fractions and a 
conversion rate over time (see Block et al. (2024) and the references therein). Although 



we did not explore these biases for CAMS gas concentrations and meteorological 
variables, similar issues are likely present, potentially introducing some errors into our 
global N100 fields.” 

to 

“Regarding reanalysis data, CAMS and ERA5 are subject to various uncertainties that 
can affect the performance of our ML models. Block et al. (2024) provide a detailed 
overview of uncertainties in CAMS aerosol variables, including limited satellite retrievals 
in polar regions, omissions such as volcanic activity, and specific volcano-related 
biases around sites like Mauna Loa (Hawaii, USA) and Altzomoni (Mexico)—both of 
which emerge as hotspots in our MLR model results. Additionally, CAMS currently 
excludes nitrate aerosol mixing ratios (Inness et al., 2019) and applies a simplified 
partitioning scheme for hydrophilic and hydrophobic BC and OM based on emission 
fractions and a time-dependent conversion rate (Remy et al., 2022). We should also 
note that the relations between N100 and OM or BC in our ML models are likely to be 
affected by the apparent challenges by CAMS in predicting the overall concentration 
levels of OM (Amarillo et al., 2014) or past changes in BC concentrations over areas 
such as China (Li et al., 2024). 

For gas compounds, CAMS variables assimilated with satellite retrievals—such as CO 
and NOx—have been evaluated in studies by Inness et al. (2019) and Langerock et al. 
(2024). In contrast, variables not assimilated with satellite data are less thoroughly 
investigated, and their uncertainties likely vary notably across variables and regions. 
Although we do not explicitly assess the impact of these CAMS uncertainties on our ML 
model, they are expected to introduce errors into our global N100 fields.” 

To the last paragraph of section 5.4, when discussing issues stemming from sub-grid 
scale variability (line 719 in the revised manuscript):  

“[This discrepancy], along with other CAMS uncertainties, [may partly explain the poor 
performance observed at some stations, even when using single-station models.]” 

 

G3: The Brock et al reference seems like an interesting counterpoint, and I would have 
appreciated a direct comparison of the results of the 2 different approaches to deriving aerosol 
number concentrations, even if only over the measurement sites. 

There are two main reasons why we did not do a direct comparison to Block et al., 2024. 
Firstly, they produced estimates of the activated CCN concentrations whereas we 
produced estimates of aerosol particles larger than 100 nm. While these estimates 
correlate, especially if looking at CCN at 0.4% supersaturation, these are not exactly the 
same. Secondly, Block et al., 2024 and the dataset they produced was published after 
we had already finalised our analysis, and we concluded that the comparison would be 
significant amount of additional work at that stage.  

Qualitatively we can say that the comparison between observed and estimated CCN in 
Block et al., 2024 (Figure 7a) yields quite similar results to our comparison between 
observed and estimated N100 (Figure 5). Most of the estimated values in both cases 
remain within a factor of 10 from the observations and captures the range of 



magnitudes. However, it should be noted here that our comparison between observed 
and estimated N100 is done using in-situ ground measurements and includes mainly 
continental measurement sites, whereas the comparison presented in Block et al is 
between their estimated CCN values and observed atmospheric radiation measurement 
(ARM) CCN near the surface and they include both continental and marine sites in the 
comparison.   

 Block et al. (2024) supplementary material contains also a global map of estimated 
CCN at 0.4% supersaturation in the lowermost 1 km for 2003-2021 (Figure C1). 
Comparing this to our global maps of N100 values for 2013, we see that they show 
similar features. The concentrations are low in polar regions and high in parts of South 
Asia and East Asia. However, there are also differences, for example our estimates have 
more variation in concentrations over the continents. Additionally, our estimates have 
much lower concentrations over oceans. It is likely that the marine concentrations are 
better estimated by Block et al., as our dataset had very limited representation of marine 
environments and Block et al. show quite good performance also in the marine 
environments (Fig 7a). 

Specific comments 

S1: [L36] “need to be captured within a factor of 1.5 of their true values” – this is mentioned 
tangentially in Rosenfeld et al. without context. Is there any reasoning behind the factor of 1.5? 
If so, please include 

There is no specific reasoning for this factor, but we consider it as an expert estimate by 
 Rosenfled et al. We have modified the respective sentence to reflect this a bit better:  

“For example, Rosenfeld et al. (2014) estimate that global CCN concentrations should 
 be captured within a factor of 1.5 of their true values to reliably assess aerosol effects 
 on clouds.” 

S2: [L41]     This is optional but I wonder if you can mention any specific regions/seasons which 
are blighted by lack of CCN observation coverage from e.g., too much cloud cover, lack of 
satellite data, etc 

We think this further explanation is not required, as the main problem of CCN satellite 
observations is that the number concentrations cannot be reliably determined from 
 satellite data, despite the cloud coverage conditions or spatial data coverage. 
We think this is explained clearly enough in the manuscript. 

S3: [L125]   What is the difference between testing/validation and holdout data? As an ML 
novice, this jargon appears to describe very similar partitions of the data phase space and might 
warrant a one-line explanation as to how they differ 

Testing set, validation set, and holdout set are machine learning terms that are used 
somewhat interchangeably in the literature, and the concepts are very similar. However, 
the holdout set differs from the other two as it explicitly refers to the special case where 
the data is never used in any capacity to develop, tune or train the machine learning 
models but is held out until testing the very final version of the models. To follow the 
suggestion and make this clearer, we changed lines 126-128 in the revised manuscript 
from  



“Testing the final version of the ML model is commonly done with a holdout set. The 
holdout set is separated from the training set at the beginning of the analysis and is 
reserved solely for testing the final version.”  

to 

“To maintain the independence of the datasets used for training and testing the model, 
the model performance of the final ML model is typically evaluated with a dedicated 
dataset called the holdout set. This subset of the full dataset is set aside from the 
training data at the beginning of the analysis and reserved solely for testing the final ML 
model at the end of the analysis.” 

S4: [L165]   Are the thresholds for ‘excellent’, ‘good’, and ‘poor’ fit at 0.2/0.3 arbitrary or 
established in the ML sciences? I understand the need for categorising model skill but perhaps 
there should be a neutral level between good and poor. 

Thank you for the comment. The thresholds are indeed arbitrary. We needed to 
categorise model skill, so we defined these thresholds by looking at the model 
performance evaluation scatterplots. We have now changed these limits to ‘good’ 
(<0.2), ‘adequate’ (0.2<x<0.3), ‘poor’ (>0.3) throughout the paper.    

S5: [L208]   Just a quick check that the altitude of the interpolated predictor variables matched 
the altitude of the measurement station and corresponding CCN? 

We did not do any adjustment of the predictor variables from CAMS / ERA5 to account 
for potential differences between station elevation and the elevation in the reanalysis. 
This is because most of the stations are at relatively low elevations and are in areas with 
relatively homogenous terrain. However, we have now checked the difference between 
the actual station elevation and the reanalysis elevation and for the majority of stations 
this is small (median height difference was 43m). There are a few notable exceptions to 
this (e.g., Mukteshwar (India), Schauinsland (Germany), Hohenpeissenberg (Germany) 
and Amman (Jordan), where the differences range from 308 m to 1496 m). However, we 
do not think this has an impact on the conclusions of this study.  

[Section 4] This is a very useful section and I thank the authors for their level of detail 

S6: [L503]   Presumably the HAD issue is dust or is it NPF related - ACP - New particle formation, 
growth and apparent shrinkage at a rural background site in western Saudi Arabia?  

We do not see why the dust or NPF should be captured less efficiently in HAD than in 
other locations. Our data set still contains sites as UAE (United Arab Emirates) and AMM 
(Amman, Jordan) where high dust concentrations are common and NPF is frequent in 
many of the sites. However, we think that a possible reason for discrepancies in HAD 
might be related to strong emission and concentration gradients near the site (oil 
refineries and vegetation around Yeddah, surrounded by sea and desert). Thus, the 
relatively coarse spatial resolution of the CAMS data may not reflect well enough the 
conditions at the site.  

We have added to line 518 in the revised manuscript the following text:  

“[In Hada al Sham, Saudi Arabia (HAD), both station-excluded models underestimated 
N100, whereas among the station-included models, the MLR model showed some 
improvement and the XGB model improved noticeably (Fig. 7b)]. The underestimation 



likely stems from the station’s complex surroundings, which includes desert, sea, and a 
nearby hotspot of anthropogenic and biogenic activity (Hakala et al., 2019). While actual 
concentrations at the station can be high due to the hotspot, reanalysis data cannot 
resolve such sub-grid scale variability, resulting in underestimated predictor values and 
low N100 estimates. The station-included XGB model may still perform well if the 
predictors maintain a correlation with N100, even when underestimated.” 

In section 5.4 we continued the discussion about challenges in station-included models 
on line 653 in the revised manuscript:  

“[Since the models—especially the MLR model—struggle to capture conflicting 
variable-N100 relationships, stations with unique interactions relative to the rest of the 
dataset tend to experience the largest performance decline from single-station models 
to station-included models.] The unique interactions that lead to performance decline 
may arise not only between observed N100 and real aerosol, gas, or meteorological 
variables, but also artificially between observed N100 and CAMS variables distorted by 
uncertainties. One example of such artificial interaction is the sub-grid scale variability–
related underestimation seen in MLR estimates at Hada al Sham, discussed in Sect. 
5.1.3.” 

S7: [Section 5.1]     This section is currently a little weak and would benefit from a hypotheses 
over why we see certain biases (see comment above). Potentially this would be useful also to 
the CAMS model developers. The line in [L515] starts to do this. 

It is true that Section 5.1 does not originally address the reasons behind the challenges 
in ML model performance, as this discussion was primarily concentrated in Sections 
5.3–5.4. However, in response to this suggestion and the earlier comment (S6), we have 
now slightly expanded the discussion for the time series at each station in Section 5.1.3. 
This ensures that all stations include some discussion of model behaviour. In addition to 
the changes made based on the previous suggestion, we have also added a clarification 
on line 528 in the revised manuscript. 

“[In Värriö, Finland (VAR), the models performed well during summer, but the station-
excluded models overestimated the low concentrations during winter (Fig. 7d).] While 
the MLR station-included model did not yield notably better results than station-
excluded models, the XGB station-included model successfully captured the winter 
periods as well. In general, low concentrations tend to be quite difficult for our ML 
models to capture, but the station-included XGB model likely succeeds in capturing 
them because tree-structure allows it to fit more closely to any included training data.  

S8: [L521] Potentially my only suggestion for adding to the methodology here which I think is 
optional is: did you try to re-train the ML model without one of either BC or OC given their 
significant correlation? Potentially there is some important detail which is missed by ignoring 
these predictor variables which could be useful if only including one? 

The suggestion is very good, especially from ML point of view. Utilising strongly 
correlating variables as predictors is considered redundant and may cause overfitting. 
We did notice this issue and investigated it in quite much detail. With a previous version 
of the model, a few years ago, we investigated leaving only BC or OM, but it worsened 
the result, so we did not continue with it. The decision for continuing with both was also 
supported by BC and OM being partly related to very different aerosol sources, as OM 



includes also secondary organic aerosol (SOA), formed in the atmosphere after photo-
oxidation of both biogenic and anthropogenic volatile organic compounds (more in the 
answer for question M16 by Referee 2). While the representation of secondary organic 
aerosol is uncertain in global models (also reflected by such a strong correlation 
between BC and OM in CAMS, suggesting CAMS OM is dominated with primary organic 
matter), it can be expected to improve in the near future, due to significant investments 
in better understanding SOA formation. Due to these reasons, we decided to keep both 
BC and OM included. We still tested how the models performed when considering the 
ratio of BC and OM mixing ratios, but since it did not change the results dramatically 
(i.e., in terms of other important variables), we decided not to show these results, as 
they would have required still more model runs and added another complicated side 
path to the manuscript, without clear benefits for the outcome. 

Thus, our decision was to include all parameters despite their role in the “N100-
formation chain”, e.g., including temperature, monoterpene concentrations and OM, 
temperature being the driver for monoterpene emissions and monoterpenes forming 
OM after atmospheric oxidation. This decision was supported by our tests with adjusted 
R-squared suggesting the model performance was not artificially improved due to 
overfitting issues (Sect 4.3.3).  

To better justify the roles of including the different predictor variables, we have modified 
the following paragraph (starting at line 213 in the revised manuscript): 

“From CAMS and ERA5 datasets, we selected reanalysis variables known to either 
directly or indirectly influence the formation, growth, losses or dilution of aerosol 
particles. Most variables were sourced from the CAMS dataset, while boundary layer 
height (BLH) was obtained from the ERA5 dataset. The list of reanalysis variables used 
as predictors is provided in Table 2.” 

To be like this:  

“The list of reanalysis variables used as predictors is provided in Table 2. Most variables 
were sourced from the CAMS dataset, while boundary layer height (BLH) was obtained 
from the ERA5 dataset. The selected reanalysis variables are known to influence N100 
either directly or indirectly. The variables with direct influence relate to primary 
emissions in the N100 size range (black carbon, organic matter in terms of primary 
organic matter, sulphate aerosol, smallest size ranges of dust and sea salt aerosol) and 
their sinks (rain). The variables with indirect influence either contribute to secondary 
aerosol formation and thus particle growth into N100 size range (sulphur dioxide, 
ammonia nitrogen monoxide/dioxide, terpenes, isoprene, organic matter in terms of 
secondary organic aerosol, temperature, relative humidity), or affect their transportation 
and dilution, or indicate general exposure to combustion and biomass burning in the air 
masses (wind speed, BLH, carbon monoxide). Many of these variables can be related to 
multiple processes affecting N100 concentrations, as discussed in Sect 5.2.1.“ 

S9: [L534] Presumably the CO mixing ratio importance is because it’s a useful proxy for biomass 
burning smoke? It seems like an odd fit here given its limited aerosol chemistry so would be 
good to identify a reason for its inclusion 

It is true that CO mixing ratio is an odd one in the final list of variables. It is a very good 
tracer of combustion related primary particles, including the biomass burning smoke, as 



suggested by the referee. This seems to show in the relatively high importance of CO in 
both models (Fig. 8 of the manuscript), especially in the MLR model. This is now 
expressed in the manuscript as shown in the answer to question S8 above. 

S10: [L545] This relates to my General Comment – I think that the model framework with no 
marine sites will have very limited skill over the oceans. Perhaps the ocean ML-predicted 
concentrations can be tested with satellite, field campaigns or ship measurements where 
available but the negative coefficient for sea-salt is highly suggestive 

It is true that without marine sites the ML model framework is likely to have limited skill 
over marine regions, and this is an area that requires further development. We are 
currently working on a follow-up study that incorporates newly available data from 
stations with marine influence, including two located in the Atlantic Ocean. These 
additions are expected to improve the model's performance over the oceans.  

At this stage, we are not planning to use field campaigns or ship-based measurements. 
While such data could, in principle, be used for model evaluation, they typically lack the 
temporal coverage needed to train ML models effectively. Our preference is to use 
datasets that span full seasonal cycles to ensure robust learning. Ship measurements 
pose additional challenges, particularly in terms of spatial collocation with reanalysis 
data, which is more straightforward with fixed measurement stations. 

Regarding satellite data, we have not included them because they do not directly 
measure aerosol number concentrations. Instead, they infer aerosol loading based on 
radiative properties, which cannot be reliably translated to number concentrations 
around 100 nm (e.g., Rosenfeld et al., 2014). Moreover, satellite observations generally 
represent the entire atmospheric column, whereas our focus is on near-surface 
concentrations. 
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Review of “Global fields of daily accumulation-mode particle number concentrations using in 
situ observations, reanalysis data and machine learning” by Aino Ovaska and co-authors. 

In this manuscript the authors use a database of N100 measurements from 35 stations 
combined with reanalysis data (ERA5 meteorology and CAMS aerosol) to train and test two 
established machine learning (ML) models. N100 is a good proxy for CCN concentrations, which 
itself is an important for cloud microphysical and radiative properties. There is paucity of in-situ 
measurements for both variables, which results in considerable uncertainty when evaluating 
climate models and estimating future projections. A ML model that can provide robust global 
estimates of N100 and CCN concentrations would be a very important step forward for the 
community, therefore the focus of this study is very relevant. 

The authors take commendable effort towards robustly training and testing the ML models. All 
steps are considered and justified throughout the manuscript. The results are well presented 
and discussed and framed very well with regards to associated limitations and steps required to 
improve on the ML models accuracy and representativeness. 

I thoroughly enjoyed reading this manuscript and recommend publication in Aerosol Research 
following a discussion on a few largely minor comments. 

General comments 

G1: Some regions may have meteorological drivers that are not found in other regions – for 
example the Southern Ocean. The synoptic / seasonal meteorology and sources of aerosol will 
be very different here than any other region that includes your training dataset. The time series 
analysis in Figure 7 (lines 409 – 502) for Alert (located in a relatively remote region) 
demonstrates that it struggles with this. Does this limit the use of the ML models in regions very 
far from any of the stations? (e.g., a lot of the southern hemisphere). I should note that this is 
still an excellent dataset and just clearly demonstrates the need for additional measurements in 
these remote regions. 

This is correct and we touch on this in sections 5.2.2. and 5.3. Regions with unique 
meteorological conditions or aerosol sources pose a challenge for our ML models, 
because these conditions are not represented in the training dataset. If we exclude Alert 
from training, the model struggles there and likely in the surrounding Arctic area, which 
is both remote and meteorologically distinct. Similarly, our training set does not contain 
marine measurement stations, and therefore the ML models likely struggle over the 
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ocean. This limitation is not necessarily solely due to physical distance from stations, 
but rather due to differences in meteorology, emissions, or other region-specific factors. 

Interestingly, in regions like the east coast of Australia, which is geographically distant 
from our measurement stations, the two ML models produce consistent results. This 
suggests that the region’s conditions are sufficiently represented in the training data by 
the measurement stations, despite the distance. 

We are currently working on a follow-up study that expands the training dataset to 
include more stations (from which data has only just become available to us), including 
some with marine influence. However, even with these additions, certain regions, such 
as the Southern Ocean, will remain underrepresented. Without measurements from 
these areas, the ML model's N100 estimates are likely to be less reliable in these 
regions. 

 

G2: This is a comment rather than a suggestion. Given the lack of observations in many regions 
– I wonder whether one way to test this is to repeat the methods using output from a global 
aerosol microphysics model. There would still be associated uncertainty due to the 
microphysical processes but it would be a very good test of the methods. 

If we understand correctly, the referee is suggesting we use output from a global aerosol 
microphysics model such as GLOMAP instead of observations of N100 as the target 
(predicted variable). This is an interesting idea, and a few previous studies have 
attempted this (e.g. Yu et al., 2022; Li et a., 2022). However, as the reviewer highlights, 
the ML models will inherit any bias from the physics-based aerosol microphysics model. 
As this additional analysis would be a vast amount of work, and would considerably 
lengthen the manuscript, we have decided not to pursue this.  

G3: How would you expect the ML models to perform in a PI scenario where you have removed 
the most important features (the anthropogenic aerosol sources?). Do you think there is a 
possibility that they are only representative of the PD environment? 

Our ML models are only representative of the PD environment. ML models can replicate 
only conditions they are trained on, which here spans 2003-2020. The models do not 
understand the real underlying physics and chemistry of aerosol formation and growth 
but estimate it based on the connections between our predictor and target variables. If 
some of these connections are drastically different from what the ML models are trained 
on, such as in PI or far future situations, the models cannot be trusted to produce 
physically reasonable results. Therefore, for example using low values for anthropogenic 
predictors would not replicate PI N100.   

We now underlined this by adding the following to the conclusions (line 777 in the 
revised manuscript): 

However, it should be noted that ML models trained with observational data as the 
target variable cannot be expected to represent these variables reliably in too distinct 
conditions – determining pre-industrial or future N100 cannot be done based on present 
day observations. 



G4: Overall, do you think the community can use this as a realistic proxy for N100 (outside of 
Europe – Line 647) in the absence of a detailed aerosol microphysics model? Is there sufficient 
skill? Or do you believe more work is required? 

We are confident that already the current version of the N100 dataset can be considered 
realistic, especially in continental areas. It should be noted that the training data for the 
final global models include all the acquired datasets, thus including training data for 
those environments that were considered underrepresented due to cross-validation 
results (showing clear improvement from station-excluded to station-included models).  

For the environments unrepresented in the training data, our results should be 
considered with care. However, more data and updated ML models trained on that data 
will certainly improve the results. Currently we are gathering a wider global data set, 
including data from marine and polar environments, as well as continental 
environments influenced by marine air masses, that was not readily available before. In 
the answer for question G4 for Referee 1, we present more detailed descriptions of the 
training data that is expected to improve the global representativity of the models and 
the related modifications made to the manuscript. 

Minor comments 

M1: Line 194. The aerosols will likely have diurnal cycles in some locations. Therefore, there is 
an implicit assumption that the model reanalysis is able to capture the diurnal cycle correctly – 
is this a valid assumption? Why not use 6hourly? Some predictors (e.g., u, v, T, RH, some 
aerosol emissions) will likely vary throughout the diurnal cycle – and may be overlooked during 
feature importance analysis etc. 

This is an important point. Indeed, many of the predictors exhibit diurnal variability in the 
real atmosphere, and it is theoretically possible to extend our method to sub-daily 
timescales. However, for the purposes of this study, we chose not to pursue that 
direction. While CAMS provides 3-hourly data and ERA5 offers hourly resolution, we are 
cautious about assuming that reanalysis products fully capture these diurnal cycles 
with sufficient accuracy. Furthermore, capturing diurnal variability in N100 using ML 
models would introduce additional complexity and variance to an already challenging 
prediction task. For this reason, we chose to focus on daily averages in this study. 

There are also practical considerations: moving to 3-hourly or 6-hourly resolution would 
increase the dataset size by a factor of 4–8, requiring significantly more computational 
resources. It would also necessitate careful handling of local solar time, rather than the 
UTC-based approach we currently use. 

That said, we agree that daily averaging may reduce the apparent importance of 
variables like boundary layer height (BLH), which have strong diurnal cycles. If sub-daily 
predictions were pursued in future work, we expect that the feature importance of such 
variables could increase. 

M2: Line 196. How many data points did this remove from the sets? 

Outlier removal removed 179 datapoints out of the original 49 669 days in the training 
 set, leaving the 49 490 days mentioned on line 196.   



M3: Line 197. As you often measured very low concentrations did you also include zero counts 
when calculating the daily mean? 

We did not remove zero values before calculating the daily N100 means. However, zero 
 values were present only at two stations, and in total, just 15 daily means included any 
 zero values. After computing the daily means, we applied a log₁₀ transformation. To  
 enable this, all N100 values less than or equal to one were replaced with the smallest 
 N100 value above one measured at the respective station. 

M4: Line 212-217. How were gridded datasets spatially collocated with the measurement 
stations? Was the grid cell average used or linearly interpolated from nearby neighbouring grid 
points? 

We used values interpolated to the coordinates of the measurement station.  

We altered following places in the manuscript: 

Line 222 in the revised manuscript from 

“We matched the reanalysis data to the N100 measurements by selecting data from the 
grid-cells containing the measurement stations and including only days with 
observations.” 

to 

“In these sets, we collocated the reanalysis data to the N100 measurements by using 
values interpolated to the point of the measurement station and including only days 
with observations.” 

Line 225 (revised manuscript) from 

“However, it should be noted that average conditions within a grid-cell (up to 80 km) may 
sometimes fail to represent the single-point measurements due to sub-grid scale 
 variability in emission sources, meteorology, and topography.”  

to 

“However, the average conditions within a grid-cell (up to around 80 km) and even the 
interpolated values may sometimes fail to represent the single-point measurements 
due to sub-grid scale variability in emission sources, meteorology, and topography.” 

Line 230 (revised manuscript) from 

“In addition to the training and holdout sets, we used reanalysis data as input for 
generating the global N100 fields, retrieving the reanalysis data covering the whole globe 
for 2013.” 

to 

“In addition to the training and holdout sets, we used reanalysis data as input for 
generating the global N100 fields, retrieving the reanalysis data covering the whole globe 
at 0.75x0.75-degree resolution for 2013.” 

Line 233 (revised manuscript) from 



“We first adjusted the 0.25x0.25-degree resolution of the ERA5 dataset to match the 
0.75x0.75-degree resolution of the CAMS dataset by calculating grid-cell averages that 
correspond to CAMS data grid size.” 

to 

“For the global fields, we first adjusted the 0.25x0.25-degree resolution of the ERA5 
dataset to match the 0.75x0.75-degree resolution of the CAMS dataset by calculating 
grid-cell averages that correspond to CAMS data grid size. The rest of the analysis 
proceeded the same for all sets.” 

Line 717 (revised manuscript) from 

“Because reanalysis data represents grid-cell averages, it may not capture the true 
predictor variable concentrations at the measurement site, leading to biases in the 
model’s learned relationships.” 

to  

“Because reanalysis data represents grid-cell averages, it may not capture the true 
predictor variable concentrations at the measurement site, even if the reanalysis data is 
interpolated to the exact station location, leading to uncertainties in the model’s 
learned relationships.” 

 

M: Line 221. Related to above, how were gridded datasets collocated with the altitude of the 
measurement stations? Stations on a hilltop or a mountain site may not be well represented by 
the model surface mean. 

We did not do any adjustment of the predictor variables from CAMS / ERA5 to account 
for potential differences between station elevation and the elevation in the reanalysis. 
This is because most of the stations are at relatively low elevations and are in areas with 
relatively homogenous terrain. However, we have now checked the difference between 
the actual station elevation and the reanalysis elevation and for the majority of stations 
this is small (median height difference was 43m). There are a few notable exceptions to 
this (e.g., Mukteshwar (India), Schauinsland (Germany), Hohenpeissenberg (Germany) 
and Amman (Jordan), where the differences range from 308 m to 1496 m). However, we 
do not think this has an impact on the conclusions of this study. 

M7: Line 312 Downweighing = Downweighting?  

Thank you for the comment. Changed all instances of downweighing to downweighting. 

M8: Line 336. Re manually selecting parameter combinations. Was there not a statistical 
method that could be used to eliminate any human sourced bias? 

We selected the hyperparameters using grid search, which is a brute-force method 
where each hyperparameter is given a range of values and search iterates over all the 
possible combinations. The user chooses the initial hyperparameter ranges to test and 
manually selects the final hyperparameters, so there is a level of subjectivity involved. 
This is a commonly used and simple method, and we considered it to be sufficient for 
our use. There are more complex statistical methods, but these can be more challenging 
to implement and do not necessarily yield better results. Different methods are also 



likely to produce different optimal hyperparameter combinations so the selected 
method will affect the final selected hyperparameters. 

To clarify this, we edited the text starting on line 158 in the revised manuscript from  

“To optimize the HPs, we employed CV, where different combinations of HPs were 
evaluated to identify the combination of hyperparameters that yielded the best 
performance across several validation folds.” 

to 

“To optimize the HPs, we employed grid search, which is a commonly used brute-force 
method where each hyperparameter is given a range of manually selected values and 
the search iterates over all possible combinations. The search can be repeated multiple 
times focusing only on a subset of hyperparameters or using narrowing ranges of values 
based on previous rounds. We evaluated the performance of each hyperparameter 
combination using CV and selected the combinations that yielded the best average 
performance over the validation folds.”  

and line 347 (revised manuscript) from 

“We used the spatial train-validation split method for cross-validation to ensure the 
tuned HPs generalized across all stations (Table 3). One station, Schauinsland, Germany 
(SCH), was excluded from HP tuning due to its frequent positioning above the boundary 
layer during winter (Birmili et al., 2016). Based on the results, we manually selected 
parameter combinations that produced strong average RMSElog10 across cross-
validation rounds.” 

to 

“We used grid search and the spatial train-validation split method for cross-validation to 
ensure the tuned HPs generalized across all stations (Table 3). One station, 
Schauinsland, Germany (SCH), was excluded from HP tuning due to its frequent 
positioning above the boundary layer during winter (Birmili et al., 2016). Based on the 
grid search results, we selected parameter combinations that produced strong average 
RMSElog10 across cross-validation rounds.” 

M9: Line 367. Did you pay any specific attention in the analysis to how the ML models tested as 
a function of how remote the excluded station was? 

We find that this topic is discussed in Sect. 5.1.2 (lines 481-503 in the revised 
manuscript). 

M10: Line 406. weighed = weighted? 

Corrected weighed to weighted.  

M11: Figure 3. Suggest making figure wider to clearly show the notches and features of the 
boxplots 

 Thank you for the comment. We made Figure 3 and the boxes in the figure wider for  
 easier readability.  



M12: Line 441 (and 213). 2020 to 2022 had a reasonably strong -ve ENSO index. Could this bias 
the comparison between training and testing RMSE values? 

We trained the models using data from before 2020, primarily around 2013. As a result, 
the models are likely better at capturing conditions similar to those in the training 
period. In principle, if the testing conditions differ—for example due to ENSO—the 
model’s performance may degrade. This helps explain why testing RMSE values are 
higher than training RMSE values: the training data does not fully represent the variability 
present in the testing period. This discrepancy is not necessarily a sign of bias, but 
rather an indication of the model’s ability (or limitation) to generalize to unseen 
conditions. That said, we do not know the specific impact of ENSO on global N100 
concentrations, nor can we say that the observed decrease in model performance in 
2020-2022 period is related to ENSO.  

M13: Figure 5. Suggest adding ‘MLR model’ and ‘XGB models’ to the top of panels (a) and (c) to 
make it automatically clear to the reader what is different. 

Thank you for the comment, we added ‘MLR’ and ‘XGB’ text to panels a and c in Figure 5.  

M14: Line 459. Seems XGB is best unless extreme values. Would you therefore recommend 
using a combination of both? XGB unless MLR predicts values < 25 or > 5000? 

This is an insightful suggestion. In an earlier stage of the study, we considered creating a 
hybrid model that we would estimate to be better than any of the two separate models. 
To do such hybrid in an abrupt manner as suggested by the referee, might, however, lead 
to sudden changes in concentrations, if XGB happens to predict much less extreme 
values for the surrounding days or grid cells than MLR for the day and/or grid cell in 
question. Instead, we would suggest possibly including a third model and then blending 
the model outputs together somehow, possibly using weighted averages. However, we 
are not currently sure how to proceed with this in practice, so we decided not to discuss 
this in the manuscript.  

M15: Line 468. Suggest authors add number of stations where XGB < MLR and vice versa. 

 Edited text starting on line 481 (revised manuscript) from 

“In terms of the training error (Fig. 6), XGB had typically lower or equally good 
RMSElog10 values than MLR, indicating better performance, though there were also 
stations where MLR performed better.” 

to 

“In terms of training error (Fig. 6), 25 out of 35 stations showed lower RMSElog10 values 
for XGB compared to MLR, indicating generally better performance. However, MLR 
achieved equally good or better performance in 10 stations.” 

M16: Line 521. Given the importance of BC and OM, how well are they represented in CAMS? 

As described in detail by Remy et al. (2022) and summarized briefly by Eskes et al. 
(2024), fixed fractions of OM and BC emissions are assumed to be in hydrophobic form 
and to turn into hydrophilic forms over fixed e-folding times in CAMS. The secondary part 
of OM (SOA) is represented with dedicated tracers, distinguishing biogenic and 
anthropogenic origins, and coupled with tropospheric chemistry for their production.  



Some work has been done to evaluate OM and BC predicted by CAMS. Such evaluations 
indicate a substantial overestimation of OM, up to a factor 3, as compared with global 
surface observations (Amarillo et al., 2024). For BC measured in China, CAMS appears 
to capture the overall concentration levels and their seasonal cycles relatively well, but 
to fail in predicting the observed decline in BC concentrations over the past couple of 
decades (Li et al., 2024).  

We added the following text into the end of this paragraph (line 676 in the revised 
manuscript):  

“We should also note that the relations between N100 and OM or BC in our ML models 
are likely to be affected by the apparent challenges by CAMS in predicting the overall 
concentration levels of OM (Amarillo et al., 2014) or past changes in BC concentrations 
over areas such as China (Li et al., 2024).” 

M17: Line 531. What happens if you were to remove either BC or OM as one of the predictor 
variables? 

 A similar question (S8) by Referee 1 is addressed above. 

M18: Figure 9. Missing M in label of panel (c). Suggest making station circles in (c) larger. 

Thank you for the comment. We corrected LR to MLR in the colorbar of panel c. We also 
 increased the size of the station circles. 

M19: Line 602. Would you therefore recommend concentrating on regions with extreme N100 
magnitudes to better train the global ML models? 

Ideally, one should cover the whole N100 concentration level scale encountered in the 
atmosphere, as well as regions having very different natural and anthropogenic 
emissions contributing to N100, including different anthropogenic to natural 
contribution ratios. Concerning the N100 levels, it might be more beneficial to focus on 
low-concentration regions rather than high-concentrations ones, given that cloud 
droplet number concentrations, and eventually many cloud properties, tend to be most 
susceptible to aerosol over areas having low levels of CCN (e.g. Reutter et al., 2009; Liu 
et al., 2024). In practice, the choice of stations is severely limited by the availability of 
data. At present, for example, there is scarcity of data from the southern hemisphere, as 
well from many large-scale ecosystems such as tropical forests, savannah etc. 

The regions, where additional long-term data sets are estimated to be most useful, are 
now better stated in the revised manuscript. A thorough description of the changes is 
given in the reply to the first general comment (G1) by Referee 1. 

M20: Line 667. Worth noting that in well mixed boundary layers these ground-based ML models 
will likely provide representative values at cloud base. 

We adjusted text (starting on line 696 in the revised manuscript) from 

“Additionally, because our method relies on ground-level N100 measurements, our ML 
models can generate only ground-level N100 estimates. However, for many applications 
knowing the vertical profile of N100 would be important. For example, CCN 
concentrations are particularly important near or above the cloud base (Quaas et al., 



2020), especially in cases where the cloud base is decoupled from surface conditions 
(Su et al., 2024).” 

to 

“Additionally, because our method relies on ground-level N100 measurements, the ML 
models can only produce ground-level N100 estimates and do not provide vertical 
profile information, which is needed for certain applications. For example, when 
studying aerosol–cloud interactions, CCN concentrations near or above the cloud base 
are particularly important (Quaas et al., 2020). While the ground-level aerosol 
concentrations represent the cloud-level concentrations in well-mixed boundary layers, 
where surface and cloud base conditions are coupled, they do not reflect cloud-level 
concentration under decoupled conditions (Su et al., 2024).” 
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