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Abstract. Accurate global estimates of accumulation-mode particle number concentrations (N100) are essential for under-

standing aerosol–cloud interactions, their climate effects, and improving Earth System Models. However, traditional methods

relying on sparse in situ measurements lack comprehensive coverage, and indirect satellite retrievals have limited sensitivity in

the relevant size range. To overcome these challenges, we apply machine learning (ML) techniques— multiple linear regres-

sion (MLR) and eXtreme Gradient Boosting (XGB)—to generate daily global N100 fields, using in situ measurements as target5

variables and reanalysis data from Copernicus Atmosphere Monitoring Service (CAMS) and ERA5 as predictor variables. Our

cross-validation showed that ML models captured N100 concentrations well in environments well-represented in the training

set, with over 70 % of daily estimates within a factor of 1.5 of observations. However, performance declines in underrepresented

regions and conditions, such as clean and remote environments including marine, tropical and polar regions, underscoring the

need for more diverse observations The most important predictors for N100 in the ML models were aerosol-phase sulphate10

and gas-phase ammonia concentrations, followed by carbon monoxide and sulfur dioxide. Although black carbon and organic

matter showed the highest feature importance values, their opposing signs in the MLR model coefficients suggest their effects

largely offset each other’s contribution to the N100 estimate. By directly linking estimates to in situ measurements, our ML

approach provides valuable insights into the global distribution of N100 and serves as a complementary tool for evaluating

Earth System Model outputs and advancing the understanding of aerosol processes and their role in the climate system.15

1 Introduction

Accumulation-mode particles are aerosol particles ranging from 100 to 1000 nm in diameter. They can be emitted directly in

this size range from various natural and anthropogenic sources or form through the growth of particles either emitted in smaller

sizes or formed by atmospheric new particle formation (e.g. Morawska et al., 1999). In the atmosphere, accumulation mode

particles play a critical role in the climate due to their influence on cloud properties and interaction with atmospheric radiation20

(Forster et al., 2021).

Cloud formation occurs when an air mass becomes supersaturated, leading to the condensation of water vapor on aerosol

particles known as cloud condensation nuclei (CCN), forming cloud droplets (Boucher et al., 2013). Whether a particle can act

as CCN at a given supersaturation depends on its composition and size (e.g. McFiggans et al., 2006; Andreae and Rosenfeld,

2008). Particles around 100 nm in diameter are generally large enough to activate as CCN under typical atmospheric conditions25

regardless of their chemical composition (Dusek et al., 2006; Kerminen et al., 2012; Pöhlker et al., 2021), making the number

concentrations of accumulation-mode particles a good estimate for CCN-active particles. Aerosol particles can influence the

radiative budget both in direct and indirect ways. The number concentration of CCN-active particles affects the cloud’s prop-

erties, for example cloud albedo, cloud liquid water path, cloud lifetime, and precipitation properties of clouds (e.g. Twomey,

1977; Albrecht, 1989; Forster et al., 2021; Stier et al., 2024). Additionally, because aerosol particles alter transmittance of30

radiation in the atmosphere, they can modify the atmospheric temperature profile, impacting the evaporation and condensation

processes in the clouds (Forster et al., 2021). Due to the complexity of these interactions, aerosol-cloud interactions remain the

largest source of uncertainty in the radiative forcing estimates and future climate projections (Forster et al., 2021).
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Understanding the global distribution of accumulation-mode particle number concentrations is essential for improving our

understanding of CCN and therefore aerosol-cloud interactions. For example, to reliably assess aerosol effects on clouds,35

global CCN concentrations need to be captured within a factor of 1.5 of their true values (Rosenfeld et al., 2014). However,

obtaining such accuracy with measurements on a global scale is challenging. Although in situ measurements of both CCN

and accumulation mode particle number concentrations are available and crucial for understanding spatial variation, they have

limited spatial and temporal coverage (Rosenfeld et al., 2014; Schmale et al., 2018). As a result, global observations rely

heavily on satellite remote sensing, which introduces its own set of challenges (e.g. Rosenfeld et al., 2014; Bellouin et al.,40

2020; Quaas et al., 2020). For example, satellites cannot directly observe the aerosol particle number concentrations. Instead,

they often rely on indirect retrievals, like radiation extinction-related variables such as aerosol optical depth (AOD) or aerosol

index (AI). Inferring number concentrations from these retrievals is challenging because they relate to the entire columnar

burden of particles in the atmosphere and are sensitive to other variables, including relative humidity and aerosol particle size.

Moreover, satellites cannot detect aerosol loadings beneath clouds, making it difficult to obtain data under the conditions where45

these measurements would be most needed.

Accumulation-mode particle and CCN number concentrations also pose challenges for Earth System Models (ESMs). Ac-

curately modeling aerosol growth from small particles to the accumulation-mode size range requires detailed numerical de-

scriptions of complex aerosol dynamics within ESMs (Blichner et al., 2021). This task is both challenging and computationally

expensive, leading to simplified physical representations in ESMs, adversely affecting their accuracy. Many ESMs employ50

bulk-mass aerosol schemes without direct particle number concentration calculations (e.g., Yu et al., 2022). If particle number

size distributions are represented in the ESMs, they are typically described with modal aerosol schemes, where distributions

are represented by several log-normal modes (e.g. Mulcahy et al., 2020; Blichner et al., 2021; Noije et al., 2021). However, this

method involves a priori assumptions about the size distribution that often inaccurately reflect the true size distributions and

thus alter the flow of particles growing from one mode to another (Blichner et al., 2021; Bergman et al., 2012; Korhola et al.,55

2014). These issues can be avoided by using sectional schemes, where size distributions are represented by size bins, but these

are more computationally expensive (Blichner et al., 2021).

Given the challenges of directly measuring accumulation-mode particle and CCN concentrations, as well as the limitations

of the ESMs, there is a clear need to develop alternative estimation methods. One such method is the recent work by Block

et al. (2024), who derived global CCN concentrations using aerosol mass mixing ratios from CAMS reanalysis data (CAMS60

data is discussed further in Sect. 3.2). These aerosol mass concentrations, constrained by satellite-retrieved AOD, were con-

verted into aerosol number size distributions based on estimated size distributions for each aerosol species. They then applied

modified kappa-Köhler theory to calculate the number of particles that activate into CCN at specific supersaturation levels.

Their approach provides valuable insight into global CCN concentrations at different supersaturations, constrained by the

satellite observations assimilated into CAMS reanalysis data. However, it does not incorporate direct CCN or particle number65

measurements and relies solely on CAMS reanalysis data.

Nair and Yu (2020) presented an alternative approach utilizing machine learning (ML) to estimate CCN concentrations.

They selected 46 sites across the globe and employed a chemical transport model to calculate CCN concentrations along with
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various predictors, including aerosol, chemical, and meteorological variables at these locations. This dataset formed the basis

for training a Random Forest Regression Model, which was then evaluated using CCN observations from the Southern Great70

Plains (USA) measurement station. Although the method relied primarily on modeled CCN concentrations and predictors, it

demonstrated the potential of ML techniques for estimating aerosol number concentrations. A follow-up study utilized a similar

approach and estimated particle number concentrations (diameters 1.2-120 nm) using Random Forest Regression Model (Yu

et al., 2022).

Another machine learning application, that has gained popularity in atmospheric sciences in recent years, is extending obser-75

vations from measurement stations to larger geographic areas. This method has been quite commonly employed for estimating

PM2.5 and other air pollutant concentrations across local and regional scales (e.g., Ma et al., 2019; Di et al., 2019; Kim

et al., 2021; Wang et al., 2022, 2023; Yu et al., 2023). Some methods focus on extrapolating measurements using solely the

target measurements from measurement stations with no additional predictors. For example, Ma et al. (2019) utilized a neural-

network-based spatial-temporal extrapolation method to estimate PM2.5 concentrations in the state of Washington (USA).80

However, in most cases, the ML models are trained to estimate the concentrations based on a range of widely available vari-

ables, including other air quality measurements, meteorological data, satellite retrievals, geographical and land use information,

reanalysis datasets, and outputs from chemical transport models.

In this study, we employ ML techniques to bridge the gap between localized in situ measurements of accumulation-mode

particle concentrations and the global scale. We train two ML models – a multiple linear regression model and an eXtreme Gra-85

dient Boosted model (described in Sect. 2.1) - using in situ measurements of N100 as the target variable and reanalysis variables

from the CAMS and ERA5 datasets as predictors (described in Sect. 3). These models generate daily number concentration

fields for particles with dry diameters larger than 100 nm (N100). Sect. 4 details our methods for training the ML models and

assessing the model performance both at the measurement stations and outside of them. Once trained, we use these ML models

to generate daily global N100 fields N100 for 2013. We also investigate the reliability of the global ML models across different90

regions based on the influence predictor variables have on the models and how the MLR and XGB model fields differ.

2 Background on machine learning methods

This section contains a brief overview of the methods and the two different ML models we used in this study to estimate N100.

Further reading on these methods can be found for example in Kuhn and Johnson (2013). The more detailed description of

how we applied these techniques is in Sect. 4.95

2.1 ML models

Multiple Linear Regression (MLR) is a simple yet effective method that extends ordinary least squares regression to model

the relationship between multiple predictor variables and a single target variable (e.g., Kuhn and Johnson, 2013). It assumes a

linear relationship between the set of predictors and the target. The MLR model finds a linear equation consisting of coefficient
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terms for each predictor variable and a constant term (intercept) to minimize the sum of squared residuals between the predicted100

and observed values.

eXtreme Gradient Boosting (XGB) combines a tree-based ensemble method with gradient boosting (Chen and Guestrin,

2016). In simple terms, XGB trains sequentially weak predictive estimators (decision trees) that, at each step, aim to correct

the errors of the previous estimators. The final estimate is calculated as the sum of the decision tree estimates. The number of

trees can typically be between 100 and 1000. XGB is used both for regression and classification tasks. Here, we used it for105

regression with squared error as the loss function.

We chose these two ML models because they complement each other well. MLR is a simple, interpretable model that

provides insights into the relationships between predictors and the target variable through the coefficients. It also can extrapolate

beyond the range of values in the training data, at least if the relationship with the target variable and the covariates is linear.

In contrast, XGB is well-suited for complex, non-linear data and interactions but is more computation-intensive and difficult110

to interpret. XGB is also more limited in its ability to extrapolate beyond the range of values in the training data, as it predicts

constant values far outside the training data. By using both MLR and XGB, we can compare two fundamentally different ML

methods. The differences in the estimates produced by the ML models may shed light on the global ML model performance,

which is otherwise difficult to assess.

2.2 ML training and evaluation process115

2.2.1 Training, validation and holdout sets

A typical supervised learning process, such as regression discussed here, involves two main steps: model training and per-

formance evaluation. A portion of the full dataset, called the training set, is used to train the model. During training, the

model learns from both the target and predictor variables in the training set, adjusting its internal parameters to capture their

relationship.120

Once the model is trained, its performance is evaluated with a portion of the full dataset that is separate from the training

set. In the testing phase, the trained model receives only the predictor variables and generates estimates for the target variable.

These estimates are then compared against the observed target values to assess model performance. To prevent data leakage and

ensure reliable model performance assessment, the datasets used for training and testing the model must remain independent.

To maintain the independence of the datasets used for training and testing the model, the model performance of the final125

ML model is typically evaluated with a dedicated dataset called the holdout set. This subset of the full dataset is set aside from

the training data at the beginning of the analysis and reserved solely for testing the final ML model at the end of the analysis.

The allocation of data between training and holdout sets depends on the specific application. This includes how much data is

assigned to each set and which data points are selected for training versus testing. When data is limited, allocation must be

done carefully to ensure that both sets remain representative. In some cases, it may be preferable to forgo data splitting and130

train the model on all available data. In these cases, resampling methods such as cross-validation (CV) can be used to evaluate

model performance using only the training data.
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2.2.2 K-Fold Cross-Validation

In CV, the original training set is further divided into smaller groups: a new training set and a validation set, which is now used

to evaluate the model performance. We used two types of CV, k-fold CV and spatial CV.135

K-fold CV involves dividing the original training set into k groups. One group serves as the validation set, while the re-

maining groups form the new training set. The model undergoes training and testing iteratively, rotating through each group.

The process yields k performance values, and the average of these values is utilized to evaluate the model’s performance. The

benefit of using CV is that each data point can be used both to train the model and to test its performance while maintaining

the separation between the sets to assure reliability.140

Given the spatial structure of our dataset, we complemented traditional k-fold CV with spatial CV. In spatial CV, folds are

defined based on geographical information (e.g., Cho et al., 2020; Beigaitė et al., 2022)—in our case, by measurement station.

Because data from the same location is autocorrelated, including a station’s data in both the training and validation sets can

lead to overly optimistic performance estimates. Spatial CV mitigates this issue by ensuring greater independence between

folds because target station’s own data is not used in training.145

2.2.3 Model optimization

CV is also used for model optimization, a step prior to training the final model. This phase involves fine-tuning the model to

enhance its performance on the specific task. In our case, optimization included feature selection and hyperparameter tuning.

Feature selection refers to selecting a subset of predictor variables (also known as features) for the ML mode. If the dataset

contains predictor variables that correlate with each other, having multiple variables with similar information is redundant.150

It can also cause overfitting, where the model becomes too tailored to the training data and performs poorly on unseen data,

making the models less generalizable. The best practice is selecting only the relevant variables.

Hyperparameters (HPs) are user-defined parameters that control the complexity of the model. Increasing complexity can

improve the performance on the training data, but it also increases the risk of overfitting. Tuning HPs is essential to find the

right balance between model complexity and generalization ability. MLR does not require HPs in its basic form, while XGB155

involves several important HPs, such as the number of trees, tree depth, learning rate, and regularization parameters (XGBoost

Developers, 2022). To optimize the HPs, we employed grid search, which is a commonly used brute-force method where each

hyperparameter is given a range of manually selected values and the search iterates over all possible combinations. The search

can be repeated multiple times focusing only on a subset of hyperparameters or using narrowing ranges of values based on

previous rounds. We evaluated the performance of each hyperparameter combination using CV and selected the combinations160

that yielded the best average performance over the validation folds.

2.2.4 Model performance metric

For the performance metric, we used root mean squared error (RMSE) between the log10-transformed observed N100 values

and the log10-transformed estimated N100 values (RMSElog10). We used log10-transformed N100 values in our analysis be-
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cause we were interested in capturing the correct order of magnitude rather than exact N100 values. Additionally, RMSE is165

scale-dependent resulting in higher errors for higher N100 values. Log10-transformation mitigates this issue.

The RMSElog10 calculated using the training set is referred to as training error, and the RMSElog10 calculated with a separate

holdout set is referred to as a testing error. A low RMSElog10 indicates good performance, whereas higher values indicate poorer

performance. In this study, we considered the model performance with RMSElog10 below 0.2 to be excellent (at least 70 % of

the estimated values were within a factor of 1.5 from the observed values, i.e., between the observed value divided by a factor170

1.5 and the observed value multiplied with a factor 1.5), below 0.3 good (at least 50 % of the estimated values were within a

factor of 1.5 from the observed values) and above 0.3 poor (below 50 % of the estimated values were within a factor of 1.5

from the observed values).

2.2.5 Feature importance

Interpreting the ML model involves assessing the importance of each variable (also known as features). The estimation of175

feature importance differs between MLR and XGB models. In MLR models, importance is determined by the coefficients

of the variables. When variables have a similar range of values or are scaled, the absolute value of a coefficient indicates its

importance, and the sign (positive or negative) shows whether an increase in the variable leads to an increase or decrease in

N100. In contrast, XGB models do not have a straightforward method for estimating variable importance; instead, they provide

various approaches (XGBoost Developers, 2022). We used the gain method, which evaluates importance based on the accuracy180

improvement in a branch when a variable is included (XGBoost Developers, 2022).

3 Data description and processing

3.1 Measured N100 (target variable)

The dataset contained ground-level in situ N100 measurements from 35 measurement stations worldwide (Fig. 1). Depending

on the station, the measurements were performed with either a Differential Mobility Particle Sizer (DMPS) (Aalto et al.,185

2001) or a Scanning Mobility Particle Sizer (SMPS) (Wiedensohler et al., 2012). The dataset contained sub-hourly N100

calculated from the number concentration of particles between 100 nm and the upper limit of the measurement instrument,

which varied between 400 nm and 1000 nm (Table 1). Because the number concentration of accumulation-mode particles is

typically dominated by particles with diameters well below 400 nm (Leinonen et al., 2022), it is very unlikely that the differing

upper limits have a notable impact on our results. Further description of each station, the measurement instrument used, and190

references are in Table 1.

We separated the measurements into training and holdout sets based on temporal division (discussed further in Sect. 4.1).

The training set contained observations from 2003 to 2019, with the specific measurement periods and data availability varying

across stations (Fig. 2). The shortest available time series spanned 201 days, while the longest extended over 6 182 days,

altogether 49 490 data points. The holdout set contained N100 measurements for 2020-2022. For this time period, we had data195
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Figure 1. Map of measurement stations. Panel a) shows the map and panel b) zoom-in to Europe. The numbers refer to stations as listed in

Table 1.

from fewer stations, covering only a subset of European stations with altogether 9 587 data points. The data availability of this

testing dataset can be seen in Fig. S1.

We processed the N100 measurement data by first ensuring all timestamps were in UTC time and then calculating daily

averages. To address outliers likely caused by measurement errors, we removed values outside three standard deviations from

the station’s mean. The observed N100 concentrations ranged from a few particles per cm−3 to tens of thousands of particles200

per cm−3. Because the N100 concentrations show roughly a lognormal distribution and our aim was to capture the correct order

of magnitude rather than exact N100 values, we employed log10-transformation for N100.

3.2 Reanalysis data (predictor variables)

Reanalysis data is a gridded dataset created by assimilating observations from various sources, such as in situ measurements

and satellite retrievals, into a numerical weather prediction model. In this study, we used reanalysis variables collected from205

the Copernicus Atmosphere Monitoring Service (CAMS) “CAMS global reanalysis (EAC4)”-dataset (Inness et al., 2019a, b)

and “ERA5 hourly data on single levels from 1940 to present”-dataset (Hersbach et al., 2023). Both datasets are generated by

the European Centre for Medium-Range Weather Forecasts using the Integrated Forecasting System (IFS) model for numer-

ical weather prediction. CAMS provides global datasets for past atmospheric composition with 3-hourly time resolution and
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Figure 2. The temporal data availability of N100 measurements at different stations in the training set. The station numbers and abbreviations

correspond to Table 1.

0.75x0.75-degree spatial resolution. ERA5 offers global datasets for numerous atmospheric variables at hourly time resolution210

and 0.25x0.25-degree spatial resolution.

The list of reanalysis variables used as predictors is provided in Table 2. Most variables were sourced from the CAMS

dataset, while boundary layer height (BLH) was obtained from the ERA5 dataset. The selected reanalysis variables are known
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Table 2. Information on the variables used in model training and testing. The table lists variable names, variable abbreviations, variable

units, model level of reanalysis data if applicable, and whether the variable was log10-transformed. N100 was obtained from measurements.

The other variables were from reanalysis data, with boundary layer height from ERA5 dataset and other reanalysis variables from CAMS

reanalysis data. Wind speed and relative humidity were calculated from CAMS variables. The reanalysis variables contained some single-

level variables, but most of the variables were multi-level variables, which we downloaded for model level 60, which is 10 m above ground

under standard atmospheric conditions.

Variable Name Abbreviation Unit Model level log10-transformation

Number concentration of particles larger than 100 nm N100 cm−3 - yes

Hydrophilic organic matter aerosol mixing ratio OMh.phil. kgkg−1 60 yes

Hydrophobic organic matter aerosol mixing ratio OMh.phob. kgkg−1 60 yes

Hydrophilic black carbon aerosol mixing ratio BCh.phil. kgkg−1 60 yes

Hydrophobic black carbon aerosol mixing ratio BCh.phob. kgkg−1 60 yes

Sulphate aerosol mixing ratio Sulphate kgkg−1 60 yes

Dust aerosol (0.03 - 0.55 µm) mixing ratio Dust kgkg−1 60 yes

Sea salt aerosol (0.03 - 0.5 µm) mixing ratio Sea salt kgkg−1 60 yes

Carbon monoxide mixing ratio CO kgkg−1 60 yes

Sulphur dioxide mixing ratio SO2 kgkg−1 60 yes

Ammonia mixing ratio NH3 kgkg−1 60 yes

Nitrogen monoxide mixing ratio NO kgkg−1 60 yes

Nitrogen dioxide mixing ratio NO2 kgkg−1 60 yes

Isoprene mixing ratio C5H8 kgkg−1 60 yes

Terpenes mixing ratio C10H16 kgkg−1 60 yes

Boundary Layer Height BLH m Single level no

Specific rain water content mixing ratio SRWC kgkg−1 60 yes

Air temperature at 2 m height T K Single level no

Dew point temperature at 2 m height Td K Single level no

10-m u-component of wind U ms−1 Single level no

10-m v-component of wind V ms−1 Single level no

10-m wind speed Wind speed ms−1 - yes

2-m relative humidity RH % - no

to influence N100 either directly or indirectly. The variables with direct influence relate to primary emissions in the N100 size

range (black carbon, organic matter in terms of primary organic matter, sulphate aerosol, smallest size ranges of dust and sea215

salt aerosol) and their sinks (rain). The variables with indirect influence either contribute to secondary aerosol formation and

thus particle growth into N100 size range (sulphur dioxide, ammonia nitrogen monoxide/dioxide, terpenes, isoprene, organic
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matter in terms of secondary organic aerosol, temperature, relative humidity), or affect their transportation and dilution, or

indicate general exposure to combustion and biomass burning in the air masses (wind speed, BLH, carbon monoxide). Many

of these variables can be related to multiple processes affecting N100 concentrations, as discussed in Sect 5.2.1.220

Reanalysis variables served as predictors in the training and holdout sets. In these sets, we collocated the reanalysis data

to the N100 measurements by using values interpolated to the point of the measurement station and including only days with

observations. For the training set, we selected observations from 2003-2019 period and, for the holdout set, observations

from 2020-2022 period. However, the average conditions within a grid-cell (up to around 80 km) and even the interpolated

values may sometimes fail to represent the single-point measurements due to sub-grid scale variability in emission sources,225

meteorology, and topography. For example, if a measurement station is located near strong sources or within a limited high-

emission area, such as a city, the grid-cell average in the reanalysis data may underestimate concentrations due to dilution over

a larger area. We discuss the possible effects of these and other CAMS variable related uncertainties in Sections 5.3 and 5.4.

In addition to the training and holdout sets, we used reanalysis data as input for generating the global N100 fields, retrieving

the reanalysis data covering the whole globe at 0.75x0.75-degree resolution for 2013. We chose this year because it had the230

best availability of observational data for assessing model performance.

For the global fields, we first adjusted the 0.25x0.25-degree resolution of the ERA5 dataset to match the 0.75x0.75-degree

resolution of the CAMS dataset by calculating grid-cell averages that correspond to CAMS data grid size. The rest of the

analysis proceeded the same for all sets. We calculated daily averages for the variables. Additionally, we derived two variables

from CAMS data: 2-m relative humidity (RH) and 10-m wind speed (WS). RH was computed from the dewpoint temperature235

and air temperature at 2 m height using Alduchov and Eskridge (1996) approximation for saturation vapor pressure. WS was

calculated from the 10-m u-component and 10-m v-component of wind.

Finally, we normalized the reanalysis variables that followed lognormal distribution by log10-transforming them (Table 2).

Some of the variables had minimum values at zero, and before log10-transforming, we replaced these with the next smallest

value of the variable. Additionally, if the log10-transformed value was very low compared to the rest of the values (e.g.,240

10−27), we shifted the minimum value to 10−17. This increase of the minimum value was necessary because we noticed that

in situations when the predictor values were extremely low compared to typical predictor values, it led the MLR model to

generate unphysically low N100 estimates.

4 Designing and applying training and testing procedures

In this section, we detail how the ML methods described in Sect. 2 were applied in our training and testing process for245

the ML models. The primary aim of this study was to train global ML models using limited observational data to estimate

N100 concentrations in areas without measurements. The challenge is not training the global ML models but assessing their

performance and reliability outside the measurement stations, which cannot be done with our limited holdout set. Therefore,

we designed a methodology incorporating cross-validation and intermediate ML model versions. Although we developed this
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approach for our specific data, it can be applied to other scientific questions in atmospheric and other fields of science, with250

similar challenges related to limited spatial observations.

4.1 Training and holdout sets and their limitations

As described in Sect. 3, we allocated the training and holdout sets based on temporal selection, using data from 2003-2019

for training the models and 2020-2022 for assessing model performance. This division was chosen because 84 % of measure-

ments in our dataset were collected during 2003-2019. Training ML models that can be applied globally required a training set255

that represented diverse environments and meteorological conditions, ideally covering several seasonal cycles at each location

to provide reliable analysis. However, as is often the case in atmospheric sciences, most stations did not have long observa-

tional series. Given these constraints, we prioritized the training set robustness over the holdout set representativeness and

chose to include only stations with 2020-2022 data for the holdout set. This approach also allowed us to investigate temporal

extrapolation, where we assessed model performance at the measurement stations but outside the time period used in training.260

The presented train-test split had certain limitations. In addition to excluding many of our measurement stations, the holdout

set could not assess global ML model performance outside the locations used for training. This drawback was crucial, because

our goal was not only to estimate N100 at the measurement stations (temporal interpolation and extrapolation), but also to

evaluate how well the ML models could predict values in completely new locations (spatial extrapolation). To properly assess

spatial extrapolation, we would need a holdout set containing additional stations with sufficiently long time series from different265

environments. However, long time series of particle number size distributions are not widely available, particularly outside

Europe. Therefore, ensuring a wide variety of measurement stations in both training and holdout sets is challenging, and

datasets from any additional measurement stations would also improve the training set.

4.2 Intermediate models for inferring global model performance

To address the challenges our dataset posed on training and testing the ML models, we employed CV, which allowed us to270

maximize data usage by utilizing each data point for both training and testing while maintaining separation between the sets in

each CV round. As a result, this method could be applied to all stations, regardless of data length. However, utilizing CV had

two main limitations.

First, because CV involves evaluating ML models on the same data used for model optimization, it may overestimate

the model performance. To investigate this potential bias, we compared CV performance (training error) with holdout set275

performance (testing error) at stations where holdout set was available.

Second, for training the final global ML models, we wanted to maximize the training set representation by using all available

data from 2003-2019. This approach precluded the direct use of CV for evaluating the final global ML models. To address this,

we calculated testing errors for stations with available holdout sets, but for the other stations, we relied on an alternative strategy.

We trained several intermediate models and assessed their performance with CV to infer global ML model performance.280

Although using separate ML models for generating estimates and assessing their performance was not ideal, this method
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Table 3. Summary of the different intermediate model setups and their train-test splits.

Model setup Purpose Train-test split for cross-validation

XGB HP tuning (Sect.

4.3.4)

XGB HP tuning Spatial train-test split: Target station data used as the validation

set and the data from all other sites as training data.

Single-station models

(Sect. 4.4.1)

Testing if ML models with reanalysis

data can capture observed N100

Temporal train-test split: Data divided into 4-week increments:

the first 2 weeks used in the training set, out of the last 2 weeks

3 first and 3 last days discarded and 8 days in between used

in the validation set. Rotation of 4-week periods to start from

different week of the month.

Station-excluded mod-

els (Sect. 4.4.2 and

Sect. S3)

Cross-validation: Estimating how the

global ML models may perform in en-

vironments and conditions outside the

existing measurement stations

Spatial train-test split: Target station data used as the validation

set and the data from all other sites as training data.

For analysis that required a comparable number of data points

from all stations, the validation set contained 200 data points

with 50 data points sampled per season (Sect. S3).

For comparing against station-included models, the validation

set included the same days as in station-included models below.

Station-included mod-

els (Sect. 4.4.3)

Examining and illustrating how much

of the model uncertainty at the target

station was linked to the availability of

training data in roughly similar environ-

ment or meteorological conditions to

the target station

Combination of spatial and temporal train-test split: The train-

ing data from other stations like in station-excluded models

combined with 2 weeks out of 4 weeks target station data as in

single-station models. Validation set 8 days out of four weeks

target station data as in single-station models.

utilized our limited data more effectively than reserving either portions of each station’s data or entire station datasets for

testing.

We constructed several intermediate models with different setups and corresponding CV train-validation splits (Table 3).

The first setup involved single-station models, which we trained and tested using only station-specific data. These provided285

a simple baseline performance analysis for what our method could achieve. The second setup consisted of station-excluded

models, where we utilized spatial CV. We trained station-excluded models with all stations except the target station, which

acted as the validation set. This approach provided insight into model performance in locations without measurements. The

third setup, station-included models, was similar to the station-excluded models but included a portion of the target station’s

data in the training set, allowing a comparative analysis against station-excluded models. Additionally, for illustration purposes,290

we constructed modified versions of the station-included and station-excluded models to generate a time series for 2013. We

discuss the different intermediate model setups in more detail in Sect. 4.4.
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We structured the model training and testing procedures into three main parts. First, we defined the training and testing

procedures, including data sampling, scaling, feature selection, and hyperparameter tuning, to ensure consistency and reliability

across all ML models (Sect 4.3). Second, we conducted CV analyses for the intermediate models (Sect 4.4). Finally, we trained295

the global ML models, assessed feature importance, and produced estimates for 2013 (Sect 4.5).

4.3 Model optimization and training and validation procedures

4.3.1 Train-validation splits for cross-validation

The first step in the analysis was formulating the CV procedures for the intermediate models and determining how to sample

and process the training and validation sets to ensure balanced contribution from all stations. We modified the conventional k-300

fold CV method and devised two main variations for splitting the data into training and validation sets. We used these variations

and their combinations when training and testing the intermediate models (Table 3).

The first variation, spatial train-validation split used for spatial CV, treated each measurement station as a group. One station

was excluded from the training set, and the model performance was tested on this excluded (target) station. This version was

used to construct the station-excluded models (Table 3).305

The second variation employed a temporal train-validation split to ensure that the seasonal cycle was represented both in

training and testing. Here, each station’s data was divided into four increments, with two weeks allocated to the training set,

three days discarded, eight days assigned to the validation set, and another three days discarded. Although discarding days

reduced the data availability, it minimized autocorrelation between the training and validation sets, preventing overestimated

performance. We typically repeated this process four times, rotating the weeks in the sets.310

4.3.2 Balancing training set

The train-validation splits allowed us to assess the model performance while maintaining representation from all selected

stations. However, the data length varied between the stations, with the shortest measurement series covering 201 days (about

6 and a half months) whereas the longest spanned 6182 days (about 17 years) (Fig. 2). As a result, the training sets contained

a different number of days from different stations. Training the models without addressing this imbalance could bias the315

global ML models towards stations with longer time series. To address the issue, we implemented a weight that was inversely

proportional to the number of data points in the station. Data points from stations with longer measurement series were assigned

a lower weight and shorter series a higher weight so that all stations had equal influence during training. While this approach

sacrificed some benefits of longer measurement series, it preserved all information from these longer datasets and was therefore

preferable to sampling only a subset and discarding the rest.320

Additionally, most of our stations were situated in Europe (Fig. 1), prompting us to investigate if this Eurocentricity could

produce bias in our ML models. We trained models with three different station selection schemes and used cross-validation with

spatial train-validation split to evaluate their performance at stations outside of Europe. The station selection schemes were 1)

using all stations, 2) sampling a subset of the European stations, and 3) downweighing the data points from European stations.
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We separately investigated how the selection scheme affected model performance at European stations and non-European325

stations. The analysis revealed that using all stations yielded comparable model performance as the two other methods for both

European and non-European stations. Training the models with data from all stations in the training set even resulted in better

median RMSElog10, though the improvement was not statistically significant (not shown). Thus, we decided to incorporate

data from all stations into our training set.

4.3.3 Feature scaling and selection330

An essential part of training the ML models involved processing the predictor variables (features). The variables had different

units, and their values differed by several orders of magnitude. Such discrepancies can pose a challenge for ML models,

potentially affecting their performance (e.g., Kuhn and Johnson, 2013). Additionally, assessing feature importance with MLR

coefficients requires the variables to be scaled. To address this, we centered and scaled the variables - subtracting the mean

and dividing by the standard deviation - using a scaling function fitted on the weighted training data. We applied this scaling335

to both the training and validation or holdout sets.

We also explored different feature selection approaches but ultimately included all variables in our analysis. We investigated

how the model performance was affected by selecting only the most important variables, using only a certain type of variable

(aerosol variables, meteorological and gas variables), or combining the strongly correlating variables together. However, re-

ducing the number of variables decreased the model performance, likely because all variables were relevant to at least some340

of the measurement stations. We confirmed, using adjusted R-squared, that including all variables did not artificially inflate

model performance due to the larger number of predictors (not shown). As conclusion, we chose to include all variables in our

analysis.

4.3.4 Hyperparameter tuning

After establishing the other training and testing procedures, we focused on tuning hyperparameters (HPs) for the XGB model.345

We used grid search and the spatial train-validation split method for cross-validation to ensure the tuned HPs generalized across

all stations (Table 3). One station, Schauinsland, Germany (SCH), was excluded from HP tuning due to its frequent positioning

above the boundary layer during winter (Birmili et al., 2016). Based on the grid search results, we selected parameter combina-

tions that produced strong average RMSElog10 across cross-validation rounds. When multiple parameter sets performed well,

we chose the ones that minimized training time.350

One of the hyperparameters we tuned was nestimators, which sets the number of estimators, and, consequently, training

rounds during the model training. Even though we tuned this variable, we also chose to use early stopping to avoid overfitting

and save computing resources (e.g., Kuhn and Johnson, 2013). Early stopping evaluates model performance after each training

round using a validation set and halts training if no improvement is observed after a set number of iterations. In our case,

RMSElog10 was used as the error metric, and training was stopped if performance did not improve after 10 consecutive rounds.355

Throughout our analysis we used one set of tuned HPs. Originally, we formulated the training and testing procedures with

default HPs. After deciding the procedure for training the final global ML models (detailed in Sect 4.5.), we tuned the HPs to
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align with the final training configuration. The final set of HPs can be found in Table S1. We then revisited the training and

testing formulations described above to ensure the initial conclusions remained valid.

4.4 Assessing model performance with intermediate models360

Once we had established the ML model training and testing procedures, we trained and tested the intermediate models and

used the results to investigate the model behavior and performance.

4.4.1 Single-station models

As outlined in Sect 4.2, our first intermediate model setup involved training single-station models for each individual station

(Table 3). These models provided insight into how well ML models trained specifically for one station could predict N100 at365

that location, a simpler task compared to modeling global N100 variations. We trained and tested the single-station models

using CV with the temporal train-validation split: two weeks from each month were allocated to the training set and eight

days to the validation set, repeated four times with different days rotated in the sets (Table 3). For consistency, we scaled the

variables, and for XGB, we applied early stopping and the tuned global HPs.

Although we considered tuning HPs for individual single-station models, we found that using globally tuned HPs was370

sufficient. For instance, when evaluating the performance of a single-station model for Alert, Canada (ALE)—a station with

unique characteristics because it is located in very clean polar environment—results showed minimal improvement when using

station-specific HPs (not shown). To conserve computational resources, we chose to use the global HP set across all single-

station models.

Following cross-validation, we analyzed the results to assess the models’ performance at each station and between the MLR375

and XGB models. To verify the reliability of our results, which CV may overestimate, we also evaluated single station model

performance using the holdout set for the stations where it was available.

4.4.2 Station-excluded models

The second intermediate model setup involved station-excluded models, designed to evaluate global model performance in

stations not represented in the training data (Table 3). This step was essential for estimating how well the global models could380

perform in areas without measurements. We employed the spatial train-test split for CV, testing the models using all available

data from the target station while training them with data from all other stations. To ensure balanced contributions from each

training station, we applied weighting to the data points. We scaled the variables and, for XGB, used tuned hyperparameters and

early stopping. We conducted analysis for both MLR and XGB and compared their performance at each station. Additionally,

for stations with available holdout sets, we evaluated the performance of the station-excluded models using these sets.385
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4.4.3 Station-included and station-excluded model comparison

To assess the impact of including data from the target environment in the training set, we constructed station-included models

(Table 3). For CV, we used a combination of spatial and temporal train-validation splits. The training set comprised data from

all other stations, along with two weeks per month of data from the target station, while the validation set contained eight days

per month from the target station. As with the standard temporal train-validation split, we conducted four CV rounds. We also390

scaled the variables and used tuned HPs and early stopping for XGB.

Additionally, to enable direct comparison between the station-included and station-excluded models, we created a modified

version of the station-excluded models. As before, the training set contained data from all stations except the target station, and

the validation set included only data from the target station. However, in this version, the validation set was further restricted

to include only the days that matched the temporal validation set (Table 3). This process involved four CV rounds, rotating395

through different validation sets. The scaling, HPs and early stopping were applied as before.

4.4.4 Time series analysis

As the final step in assessing model performance, we analyzed the time series generated by the station-excluded and station-

included models, comparing them to the observed N100 time series. The goal was to demonstrate the potential performance of

the final global ML models, both at the measurement stations and in areas without measurements. This analysis was conducted400

for 2013, as it had the most comprehensive data availability across different stations.

To generate the estimated N100 for this analysis, we followed a procedure similar to the original station-excluded and

station-included models (Table 3), with one key modification: the validation sets contained only data from 2013. For the

station-excluded models, this involved still using the spatial train-validation split, but with the validation set restricted to 2013

data. Similarly, for the station-included models, we continued to apply the combined spatial and temporal train-validation split,405

but the validation set consisted solely of 2013 data. However, unlike in the previous steps, we did not use cross-validation

rounds for the station-included models; instead, we used the first two weeks of each month as the training set. For both setups,

we scaled the data using the scaling function trained on the training sets, and for XGB, we applied the tuned HPs and early

stopping.

With the station-excluded and station-included models trained and the corresponding validation sets defined, we generated410

estimates for 2013. The station-excluded models produced continuous time series, while the station-included models generated

time series with only an eight-day period for each month, as determined by the validation set. After generating the estimated

N100 time series, we compared them to the observed measurements.

4.5 Global ML models and N100 fields

In the final part of the analysis, we proceeded to train the global ML models, analyze their feature importance, and generate415

global N100 fields for 2013.
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We trained the final global ML models with a training set containing all stations, all available data points, and all variables.

As before, the data points in the training set were weighed to ensure an equal contribution from all stations to the model

training. We also fitted the scaling function with the training data, scaled the variables with it, and saved it to be used as scaler

when generating the global N100 fields for 2013. Once the training set was processed, we proceeded to train the global MLR420

model (MLRglobal). For the global XGB model (XGBglobal), we followed the same procedure, except with the addition of the

tuned hyperparameters and early stopping. Here it should be noted that in principle early stopping requires separate training

and validation sets to evaluate when the model performance plateaus. However, given that the global ML model training did

not have a train-test split, we instead used the training set for evaluation. Early stopping caused the model training to interrupt

after around 425 training rounds (compared to 900 from our HP tuning), potentially earlier than it would have occurred with425

separate sets. Nevertheless, because we had utilized early stopping in the previous analyses to mitigate overfitting and save

computing resources, we continued to implement it here.

Once we had trained the MLRglobal and XGBglobal, we proceeded to analyze how different variables contributed to these

models using model given feature importance.

Finally, to generate the global N100 fields for 2013, we utilized the 2013 global reanalysis dataset. After scaling the dataset430

using the previously fitted scaler, we provided it as input for the MLRglobal and XGBglobal models and generated daily N100

fields for 2013.

We investigated the global ML models’ performance both at measurement stations and in areas without measurements. At

the measurement stations, we evaluated the global ML models using the holdout set for stations with N100 data available

between 2020 and 2022. In areas without measurements, we compared the MLRglobal and XGBglobal fields. We calculated the435

RMSElog10 between these estimates for each grid-cell, and if the error value was large, it indicated that the models generated

very different estimates for that region, meaning at least one must be inaccurate. Conversely, we could assume the estimates

were more reliable if the models produced similar results. However, even when the models yielded similar results, we could not

be certain that the estimates were close to the true N100 without actual measurements from those locations. For example, if our

reanalysis dataset contained a bias in a particular region, both models could produce similar but erroneous results. Since the440

comparison between MLRglobal and XGBglobal fields provided only a rough error estimate, we attempted to develop a more

sophisticated method for assessing global performance. However, this effort did not yield results.

5 Results and discussion

5.1 Assessing intermediate model performance

5.1.1 Single-station model performance445

The training errors for the single-station models are shown in Fig. 3. While generating these models was not the primary goal of

this study, they provided a simpler setting to evaluate our method and identify potential challenges. Many single-station models
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Figure 3. Comparison between training errors (RMSE calculated for log10-transformed concentrations) of the single-station models for one

station) with XGB and MLR machine learning models. The boxes and whiskers indicate the variation caused by selecting different train-test

splits. The boxes show the quartiles and whiskers show the 1.5 interquartile range of the lower and upper quartile. Data points outside these

are considered outliers and marked with individual markers. Additionally notches in the boxplots indicate the confidence interval of the

median. If the notches of two boxes do not overlap, it indicates that the medians are statistically significantly different at 5 % significance

level.

achieved RMSElog10 values below 0.2, and almost all remained under 0.3, indicating that model performance was generally

excellent or good.

Testing errors for stations with data from 2020–2022 are shown in Fig. 4. As expected, testing errors were slightly higher450

than training errors, but the overall conclusions remained consistent. These results demonstrate that estimating N100 using ML

models and reanalysis data is feasible. However, at some stations (e.g., Harwell, United Kingdom and Preila, Lithuania), model

performance was inadequate (RMSElog10 > 0.3), which we discuss further in Sect. 5.3

5.1.2 Assessing station-excluded and station-included model performance

We first looked at the performance of the station-excluded models, which were trained separately for each station. Fig. 5 depicts455

the station-excluded N100 estimates against the observed N100 for all the stations, when no data from the target station was

included in the training set. In practice, this means that for each station the estimated N100 was produced with a different

model and different validation set, and results are presented in one figure. In contrast to the other instances where we used

the station-excluded models, here the estimates were not generated for all the available data from the target station (Table 3).

Instead, we used only around 200 days to have a comparable number of data points from all stations in the validation sets. The460

sampling method for these 200 days is explained in Sect. S3.
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Figure 4. Comparison between the testing error (RMSE calculated for log10-transformed concentrations) of the single-station ML models

(ML models trained with data from one station) at each station with XGB and MLR machine learning models. The bars show the testing

error for both models, and the lines indicate the median training errors corresponding to Figure 3.

Figure 5 provides a rough indicator of how the global ML models would perform in locations not directly represented in

the training set. Looking first at the MLR result (Fig. 5a), even when each station had been excluded from the training set,

the station-excluded MLR models could produce the range of observed N100 values from below 10 cm−3 to over 104 cm−3.

However, the station-excluded models still struggled with replicating the observations at the low concentrations, and in general,465

54 % of daily estimates and 15 out of 35 station median estimates fell outside the factor of 1.5 from observations.

For the station-excluded XGB models (Fig. 5b), the station medians were better captured, with only 9 station medians falling

outside the 1.5-factor limit. The daily values were also captured slightly better, though still 48 % fell outside the factor of 1.5.

The station-excluded XGB models also failed to reproduce extreme values: they could not produce values below 25 cm−3,

systematically underestimated values above around 5000 cm−3, and could not produce values above 104 cm−3. Overall, these470

results show that the XGB models tend to be slightly more precise and replicate the median values better, but MLR models are

better at extrapolating to low and high concentrations, though they still struggle to capture extreme values.

Next, we analyzed in more detail the MLR and XGB station-excluded performance at different stations. To ensure that the

training error analysis (Fig. 6) was reliable, we first compared the training and testing errors against each other at the stations

that had data after 2020 (Fig. S2). Because the target station had been left out of the training set in the station-excluded models,475

the main difference between the training and testing errors was that the training error was calculated with observations before

2020 and testing errors with observations after 2020, whereas the data before 2020 had also been used to optimize the ML

models. Figure S2 showed that for station-excluded models, the difference in training and testing errors was small, and we felt

confident in drawing conclusions from the training error.
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MLR

Figure 5. Comparison between observed and estimated N100. The sampling of the data points shown in this figure are explained in Sect.

S3. Panel a) shows the result for station-excluded MLR-models and panel b) shows a zoom-in. Panels c)-d) show the result and zoom-in

for station-excluded XGB-models. The daily values are indicated in blue and station medians in red. The station medians are additionally

marked with numbers which indicate the station as listed in Table 1.

In terms of training error (Fig. 6), 25 out of 35 stations showed lower RMSElog10 values for XGB compared to MLR,480

indicating generally better performance. However, MLR achieved equally good or better performance in 10 stations. Figure

6 also shows that the station-excluded performance varied depending on the station. The European stations typically had

good or even excellent performance, probably because the N100, different emissions, and meteorological conditions at many
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Figure 6. Comparison between station-excluded MLR and XGB model performance (RMSE calculated for log10-transformed concentra-

tions) at each station.

of the European stations were quite similar to each other. Even when the target station was left out from the training of the

station-excluded model, there would still be at least one similar station in the training set. Conversely, stations with poor station-485

excluded performance might correspond to environments that did not have representation in the training set if the station was

excluded from training.

To investigate further this variation in performance, we analyzed the station-included models’ performance and compared

them against the station-excluded models’ performance (Fig. S3). For the stations with excellent station-excluded performance

(RMSElog10<0.2), we noticed that the differences between the station-included and station-excluded model RMSElog10 were490

small (below 0.01). This supports our interpretation that for many European sites (Vielsalm, Belgium; Waldhof, Germany;

Neuglobsow, Germany and Melpitz, Germany for both MLR and XGB models and Vavihill, Sweden and Košetice, Czech

Republic only for XGB model) and some other stations ( Southern Great Planes, USA; Amman, Jordan, and Marikana, South

Africa for XGB model), it did not matter whether the station had been excluded from the training, because the other stations

could still represent the excluded station during training.495

Conversely, for many stations, the station-included models produced clearly better results than station-excluded models (Fig.

S3). For the XGB model these stations include Delhi, India; Hada al Sham, Saudi Arabia; São Paulo, Brazil; Po Valley, Italy;

Zotino, Russia; Amazonas, Brazil; Nanjing, China; Värriö, Finland and Alert, Canada. The better performance confirms that

these stations have some unique characteristics, and without their contribution, the XGB model could not capture the type of
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environment they represented. For example, when Delhi, India, which has the highest N100 in our dataset, was excluded from500

the training set, the models could not replicate the high N100 values. This led to underestimation and poor performance at the

station (not shown).

The MLR models were less sensitive to whether station-specific was included in training compared to the XGB models (Fig.

S3). Because MLR uses linear predictor functions, adding a small number of new data points does not always affect the model

performance, resulting in smaller differences between the station-included and station-excluded model versions. In contrast,505

any new data in the XGB models can alter the tree structure, affecting model performance. However, this also increases the

risk of overfitting, which may reduce the XGB model’s ability to generalize outside the measurement stations.

5.1.3 Time series

Figure 7 compares the observed N100 time series in 2013 to the estimated N100 time series produced with the station-excluded

and station-included models. The comparison allowed for a better understanding of the ML model behavior outside the mea-510

surement stations.

In our dataset, Alert, Canada (ALE) was the sole representative of the extremely clean polar regions (Fig. 7a). When ALE

was excluded from the training, neither model performed well at that location, demonstrating the challenge of missing envi-

ronmental types in the training set. However, when ALE was included in the training, the models, especially XGB produced

better estimates.515

In Hada al Sham, Saudi Arabia (HAD), both station-excluded models underestimated N100, whereas among the station-

included models, the MLR model showed some improvement and the XGB model improved noticeably (Fig. 7b). The under-

estimation likely stems from the station’s complex surroundings, which includes desert, sea, and a nearby hotspot of anthro-

pogenic and biogenic activity (Hakala et al., 2019). While actual concentrations at the station can be high due to the hotspot,

reanalysis data cannot resolve such sub-grid scale variability, resulting in underestimated predictor values and low N100 esti-520

mates. The station-included XGB model may still perform well if the predictors maintain a correlation with N100, even when

underestimated.

Nanjing, China (NAN) N100 estimates were captured well, though they were mildly underestimated with the station-excluded

models and MLR station-included model (Fig. 7c). The station-included XGB model produced slightly better results. It is

possible that specific environmental characteristics in Nanjing contribute to underestimation when using reanalysis data to525

estimate N100.

In Värriö, Finland (VAR), the models performed well during summer, but the station-excluded models overestimated the

low concentrations during winter (Fig. 7d). While the MLR station-included model did not yield notably better results than

station-excluded models, the XGB station-included model successfully captured the winter periods as well. In general, low

concentrations tend to be quite difficult for our ML models to capture, but the station-included XGB model likely succeeds in530

capturing them because tree-structure allows it to fit more closely to any included training data.

Waldhof, Germany (WAL), a typical European station, was well represented by other stations in the dataset (Fig. 7e).

Consequently, even when WAL was excluded from training, the estimated N100 time series still aligned closely with the obser-
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Figure 7. Comparison between observed and model estimated N100 time series for 2013 at selected stations. The required accuracy is within
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in (Table 3). Panels show the results for stations a) Alert, Canada (ALE) b) Hada al Sham, United Arab Emirates (HAD) c) Nanjing, China

(NAN) d) Värriö, Finland (VAR) e) Waldhof, Germany (WAL) f) Bösel, Germany (BSL).
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vations. Including data from Waldhof in the training set did not enhance the results. In contrast, in Bösel, Germany (BSL) (Fig.

7f)—another central European station —both the station-included and station-excluded models systematically underestimated535

N100, although the daily variations were captured well. Birmili et al. (2016) noted that the total particle concentrations in Bösel

were higher than at the other rural German sites.

5.2 Global ML models and N100 fields

5.2.1 Feature importance

Moving on to the final global ML models, Figure 8 shows the importance of different features in MLRglobal and XGBglobal.540

The two most important variables in both ML models were the black carbon aerosol (BC) mixing ratio and the organic matter

aerosol (OM) mixing ratio. In MLRglobal, these variables were hydrophilic, whereas in XGBglobal, they were hydrophobic.

However, we should not conclude that these variables were truly the most important ones. Due to the underlying dynamics

of the CAMS dataset, BC and OM mixing ratios were highly correlated (Fig. S4), as were the hydrophilic and hydrophobic

mixing ratios (not shown). Such strong correlations between variables can pose challenges for ML models (e.g., Kuhn and545

Johnson, 2013). In the MLRglobal model, we observed an unexpected result: instead of assigning positive coefficients to both

variables, it assigned a high positive coefficient to the hydrophilic BC mixing ratio while giving the hydrophilic OM mixing

ratio approximately equally high negative coefficient. This suggests that the MLRglobal model may have overestimated the

influence of hydrophilic BC and then counterbalanced this by assigning a negative coefficient to hydrophilic OM. Typically,

their combined effect on N100 was quite small. However, if the BC and OM mixing ratios are less closely linked in certain550

locations or during certain time periods, this imbalance could significantly affect the predicted N100 concentrations. To explore

this further, we analyzed their relationship in Sect. S5 (Fig. S5).

Aside from the BC and OM mixing ratios, the most important variables influencing the ML models were sulphate aerosol,

ammonia, carbon monoxide, and sulfur dioxide mixing ratios followed by temperature (Fig. 8). Since most of these variables

are primarily associated with anthropogenic sources, it is unsurprising that in the MLRglobal model, they exhibited a positive555

relationship with N100 concentrations, meaning that an increase in their concentrations led to an increase in N100.

In contrast, the variables more linked to the natural processes tended to have lower importance and showed both positive

and negative coefficients in the MLRglobal model. Some coefficients aligned directly with expected physical processes. For

example, the relationship between specific rainwater content (SRWC) and N100 is negative because rain removes aerosol

particles from the air. Similarly, the negative coefficient for boundary layer height (BLH) reflects how a larger daily mean BLH560

dilutes N100 by mixing it into a larger volume of air.

Additionally, there were variables that have physically meaningful coefficients, but the interpretation is more nuanced, such

as the sea salt aerosol mixing ratio. A higher concentration of sea salt aerosol should result in a higher N100 concentration.

However, because higher sea salt aerosol concentration often coincides with the arrival of clean marine airmasses, MLRglobal

interprets the relationship to be negative. This is a meaningful interpretation over continental areas, but over oceans (which565

were not represented in our training set), it would fail to capture the true relationship between sea salt aerosol concentration
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Figure 8. The global ML model feature importance in descending order. Panel a) shows MLRglobal model feature importance based on MLR

coefficients. Panel b) shows XGBglobal feature importance based on gain method.

and N100. Moreover, high sea salt concentration in the sub-0.5 µm size is probably accompanied by high supermicron sea salt

aerosol concentration, which gives little additional primary CCN but may substantially suppress secondary CCN formation via

acting as a sink for low-volatile vapors and sub-CCN sized particles. A similar phenomenon can explain the negative coefficient

of the sub-0.55 µm dust aerosol.570

Finally, there were variables for which the MLR coefficients might not be able to capture the physical processes. One of

these was temperature, which may have complex relationship with N100 depending on locations. For example, in many parts

of the world, temperature can be associated with increased volatile organic compound (VOC) emissions, which leads to a

larger number of aerosol particles growing to the accumulation-mode size range Paasonen et al. (2013). This effect has a

strong correlation with isoprene (C5H8) and terpene (C10H16) emissions, and MLRglobal may struggle with variables with575

strong correlations. However, a negative coefficient assigned for C5H8 mixing ratios but positive for C10H16 mixing ratio and

temperature agrees with several studies suggesting that isoprene likely inhibits the secondary aerosol formation and growth of

particles to N100 sizes (Lee et al., 2016; Heinritzi et al., 2020). Additionally, natural VOC emissions may be suppressed during

the hottest days in many environments. On the opposite side of the temperature spectrum, cold temperatures can also lead

to higher N100 concentrations due to heating-related residential biomass combustion, which consequently increases aerosol580

and aerosol precursor emissions. The MLRglobal cannot capture these complex patterns directly but may attempt to do it

indirectly via correlating variables. This may also explain other counterintuitive coefficient values, such as NO2 having a

positive coefficient and NO negative coefficient.
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Figure 9. The estimated annual average N100 for 2013 a) with MLRglobal model, and b) with XGBglobal model. The models were trained

with all available measurement data and all measurement stations. Panel c) shows the comparison of estimated daily N100 for 2013 from

MLR and XGB models, where the color scale shows the root mean squared error between the log10-transformed N100 estimates. The smaller

the RMSE value the better the models agree. RMSE values below 0.3 indicate that the models agree well and below 0.15 that the models

agree very well.
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Figure 10. The comparison between MLRglobal and XGBglobal testing errors (RMSE calculated for log10-transformed concentrations) and

station-excluded model testing errors (corresponding to Figure 6) for the stations that had N100 measurements for 2020-2022.

5.2.2 The global N100 fields

Figure 9 shows the annual mean N100 fields in 2013, calculated by averaging the daily N100 estimates - Fig. 9a for MLRglobal585

and Fig. 9b for XGBglobal. Both models estimated the highest N100 in South Asia and East Asia and the lowest N100 in remote

locations such as polar areas and deserts.

The comparison between MLRglobal and XGBglobal N100 fields for 2013 is shown in Figure 9c. Overall, the ML models pro-

duced similar values across most continental areas, particularly in large parts of Europe and North America, though the XGB

model generally yielded slightly higher estimates. Additionally, the results agreed well (RMSElog10<0.15) near most measure-590

ment stations as well as in more densely populated areas (Smith, 2017, 2023) even in regions without in situ measurements.

This pattern is evident in the most populated areas in the Middle East, Southern Siberia and Central Asia. In South America

and Africa, the model agreement was also better in the more populated regions. However, the limited number of measurement

stations in these continents may affect the result, because not all populated regions showed strong agreement between the

models. A similar trend was observed in South and East Asia. While these regions are overall very densely populated, only595

the most highly populated areas exhibited strong agreement, which may also relate to the distribution of measurement stations.

Although the agreement between models does not confirm accuracy against measurements, it suggests consistency between

the models. This consistency is likely because these regions are well-represented in the model training, either directly through

a nearby station or indirectly because most of the stations in our dataset are located in anthropogenically influenced areas.

The models diverged in several regions (Fig. 9c), particularly over remote or clean continental environments such as600

Antarctica, the Australian deserts, the eastern Sahara Desert, and parts of the Middle East (RMSElog10 > 0.60). In the lat-

ter two regions and some mid-latitude marine regions, the difference appeared to stem from low NH3 values (Fig. S6), which
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led MLRglobal to generate lower N100 estimates. Other continental areas with smaller but still considerable discrepancies

(0.30<RMSElog10<0.45) included parts of South America, particularly the Amazon rainforest, the Congo rainforest, and some

regions in Africa, including the Kalahari Desert, where the MLRglobal model consistently predicted lower N100 values than605

XGBglobal. Additionally, there were some hotspots where MLRglobal produced clearly higher N100 estimates compared to

XGBglobal. The divergence likely stems from different responses to anthropogenic variables in the MLRglobal and XGBglobal

models. While the anthropogenic variables were important in both models, the linear relationship between the variables and

N100 in the MLR model seems to cause underestimation in low N100 values — common in clean or remote environments. XGB

model did not exhibit this behavior possibly due to its nonlinear nature. However, in some locations, the lower N100 estimates610

from the MLR model appear more accurate than those from XGB. For example, in Alert, the station-excluded MLR model

captured certain low N100 values better than the station-excluded XGB model.

Notable differences emerged also over the oceans (Fig. 9c), which are poorly represented in our training set. In these regions,

MLRglobal typically produced much higher N100 estimates than XGBglobal. However, the models showed better agreement in

continental outflow areas, such as the North-Western Pacific Ocean and major shipping routes, likely due to their anthropogenic615

influence, which makes them better represented in the model training.

The testing errors for MLRglobal and XGBglobal models at stations with 2020-2022 observations are shown in Fig. 10.

These global ML model errors aligned with previous analyses, such as the station-excluded testing errors (also in Fig. 10),

with performance varying by location and the XGB model generally outperforming MLRglobal. The most notable differences

between global and station-excluded model performance occurred at Mace Head (Ireland), Värriö (Finland) and Schauinsland620

(Germany). In all these locations the global XGB models performed better. This improvement was likely due to the frequent

low concentrations at these stations, which are challenging to capture without training representation from the target station.

In Mace Head these low concentrations were related to clean airmasses coming from the ocean, in Värriö they were associated

with clean winter periods, in Schauinsland to times when the measurement station was above the boundary layer.

5.3 Interpreting results from different ML models625

By evaluating model performance across the intermediate models (single-station models, station-included models, and station-

excluded models) and global models, we identified three cases where our models struggled to capture N100 accurately. Figure

11 presents a comparison of the RMSElog10 medians from the CV analyses for single-station models, station-included models,

and station-excluded models (the version directly comparable to station-included models, as shown in Table 3).

Firstly, our models struggled with capturing N100 at certain stations, even when using single-station models (Fig. 11). While630

the single-station estimates performed well at most stations, two stations had poor performance (RMSElog10>0.3). Additionally,

at stations with RMSElog10 values between 0.2 and 0.3, certain conditions or characteristics may still be difficult for the single-

station models to capture, lowering the performance, even though overall the RMSElog10 values are acceptable. Notably, the

stations with high single-station RMSElog10 often continued to exhibit lower performance in the other intermediate models,

suggesting that these locations are inherently difficult to capture with our method (Fig. 11).635
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Figure 11. The comparison between the medians of cross-validation (CV) results from single-station and station-excluded models colored

with results from station-included model, for a) MLR and b) XGB. The numbers correspond to stations as listed in Table 1. In panel a) one

data point (Alert, Canada, 1) was outside figure limits and is indicated separately on the figure with coordinates.

Several factors may explain these difficulties. Our dataset may lack key reanalysis variables necessary for accurately estimat-

ing N100 in these environments. Reanalysis data may also contain uncertainties or struggle to resolve sub-grid scale processes

crucial for N100 estimates. Additionally, the nonlinear interactions between predictor variables and N100 may not be fully

captured by our ML models, either due to inherent model constraints or the limited size of the training dataset. Among our

datasets, both stations where single-station model RMSElog10 exceeded 0.3 (Harwell, United Kingdom and Preila, Lithuania)640

had relatively short measurement time series. Furthermore, (Xian et al., 2024) reported that CAMS reanalysis AOD differs

from AERONET AOD in areas near Preila. Their observation suggests that there may be persistent sub-grid scale variability

in aerosol concentrations around the site, which could be contributing to model inaccuracies.

The second challenge our ML models faced was a decline in station-included model performance compared to the single-

station models. While we expected some decrease due to the added complexity of incorporating multiple locations, the station-645

included performance declined notably at some stations. The decline was particularly evident in the MLR models, where at

13 stations the station-included model RMSElog10 values were over 1.5 times higher than single-station model RMSElog10

values (Fig. S7a). For the XGB models, the station-included performance was notably worse than single-station performance

in Schauinsland (Germany), and possibly in Bösel (Germany) and Annaberg-Buchholz (Germany) (Fig. S7b). This weaker

performance may arise from variable-N100 interactions that differ from other stations. Since the models—especially the MLR650

model—struggle to capture conflicting variable-N100 relationships, stations with unique interactions relative to the rest of

the dataset tend to experience the largest performance decline from single-station models to station-included models. The
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unique interactions that lead to performance decline may arise not only between observed N100 and real aerosol, gas, or

meteorological variables, but also artificially between observed N100 and CAMS variables distorted by uncertainties. One

example of such artificial interaction is the sub-grid scale variability–related underestimation seen in MLR estimates at Hada655

al Sham, discussed in Sect. 5.1.3.

Conversely, at least in one station (Vavihill, Sweden), the station-included XGB model outperformed the single-station XGB

model (Fig. S7b). One explanation for this improvement is that Vavihill has a relatively short measurement series in our dataset,

which limited the single-station performance. However, in station-included models, Vavihill’s data may be supplemented by

other similar stations in our dataset, improving the performance.660

Thirdly, our models struggled in locations that were not well-represented in our training data. While single-station and

station-included models, which incorporated station-specific data, generally captured N100 at least moderately well (RMSElog10<0.3),

station-excluded models performed notably worse at certain sites—even when the station-included performance was excellent

(RMSElog10<0.2) (discussed in more detail in Sect. 5.1.2). Figure 11 illustrates this pattern especially for the XGB models:

when the XGB station-included performance was excellent (RMSElog10<0.2), the station-excluded performance varied widely,665

ranging from excellent (RMSElog10<0.2) to poor (RMSElog10>0.3). If both station-included and the station-excluded perfor-

mances were excellent, it indicated that N100 in these stations could be captured well even without their own data in the training

set because similar stations in our dataset provided sufficient representation. Conversely, as station-excluded RMSElog10 in-

creased, it suggested that incorporating station-specific data became increasingly important for accurate estimates. This effect

was particularly notable in environments with high N100 concentrations compared to the other stations.670

Our cross-validation indicated that our training set best represents European urban or rural environments influenced by

human activity and similar anthropogenically influenced environments. Even when evaluating the global ML models with a

holdout set containing data from 2020-2022 (Fig. 10), the models performed well in capturing N100 at the European stations.

The global model comparison gives similar results, showing that the models tend to agree in Europe but also in other populated

areas.675

5.4 ML model limitations

While our results demonstrate promising performance across many environments, the findings from Sect. 5.3 highlight that

model accuracy depends strongly on the availability and representativeness of training data. In other words, different limitations

in the N100 measurements and reanalysis data cause limitations in the ML models. While Sect. 5.3. touched upon these issues,

here we discuss them further.680

For the N100 measurements, the main challenge is data availability. To train ML models that capture diverse environments

and meteorological conditions, we require a broad dataset that covers a wide range of locations and time periods. In an ideal

case, the dataset would represent environments with different natural and anthropogenic emission levels extending from low

to high global extremes, as well as a wide spectrum of different anthropogenic to natural contribution ratios. The global

distribution of long-term data sets, reflected by measurement stations utilised in this study, is clearly biased towards continental,685

anthropogenically influenced and European environments. Thus, the performance of our global ML models is expected to be
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worse in marine and tropical environments, as well as in the southern hemisphere and in polar regions. In addition, ideally,

we would have at least five years of data from each station. This would allow for the division of data into training, validation,

and holdout sets, with at least one full seasonal cycle in each set and multiple cycles in the training set. Since environmental

conditions and aerosol concentrations vary between years, such a dataset would enable ML models to generalize better and690

learn from a broader range of conditions, resulting in more robust estimates. Unfortunately, our current dataset lacks full

seasonal coverage at some stations, which makes it harder for the ML models to accurately capture station-specific and global

trends. This emphasizes the need for continuous long-term observations.

Another challenge with in situ measurements is potential measurement errors that may remain after filtering. These errors

can propagate into the ML models, affecting overall accuracy. Additionally, because our method relies on ground-level N100695

measurements, the ML models can only produce ground-level N100 estimates and do not provide vertical profile information,

which is needed for certain applications. For example, when studying aerosol–cloud interactions, CCN concentrations near or

above the cloud base are particularly important (Quaas et al., 2020). While the ground-level aerosol concentrations represent

the cloud-level concentrations in well-mixed boundary layers, where surface and cloud base conditions are coupled, they do

not reflect cloud-level concentration under decoupled conditions (Su et al., 2024).700

Regarding reanalysis data, CAMS and ERA5 are subject to various uncertainties that can affect the performance of our ML

models. Block et al. (2024) provide a detailed overview of uncertainties in CAMS aerosol variables, including limited satellite

retrievals in polar regions, omissions such as volcanic activity, and specific volcano-related biases around sites like Mauna

Loa (Hawaii, USA) and Altzomoni (Mexico)—both of which emerge as hotspots in our MLR model results. Additionally,

CAMS currently excludes nitrate aerosol mixing ratios (Inness et al., 2019a) and applies a simplified partitioning scheme for705

hydrophilic and hydrophobic BC and OM based on emission fractions and a time-dependent conversion rate (Rémy et al.,

2022). We should also note that the relations between N100 and OM or BC in our ML models are likely to be affected by the

apparent challenges by CAMS in predicting the overall concentration levels of OM (Amarillo et al., 2024) or past changes in

BC concentrations over areas such as China (Li et al., 2024).

For gas compounds, CAMS variables assimilated with satellite retrievals—such as CO and NOx—have been evaluated in710

studies by (Inness et al., 2019a) and (Langerock et al., 2024). In contrast, variables not assimilated with satellite data are less

thoroughly investigated, and their uncertainties likely vary notably across variables and regions. Although we do not explicitly

assess the impact of these CAMS uncertainties on our ML model, they are expected to introduce errors into our global N100

fields

Moreover, integrating gridded reanalysis data with single-point N100 measurements can introduce challenges at the stations715

located in grid-cells with sub-grid scale variability in emission sources, meteorology, and topography. Because reanalysis data

represents grid-cell averages, it may not capture the true predictor variable concentrations at the measurement site, even if the

reanalysis data is interpolated to the exact station location, leading to uncertainties in the model’s learned relationships. This

discrepancy, along with other CAMS uncertainties, may partly explain the poor performance observed at some stations, even

when using single-station models.720
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6 Summary and Conclusions

Observation based data on global accumulation mode particle number concentrations (N100) are essential for assessing global

CCN concentrations and their climate impacts as well as for evaluating Earth System Models. According to Rosenfeld et al.

(2014), reducing uncertainties in aerosol-cloud interactions requires capturing global CCN concentrations within a factor of

1.5 of true values. In this study, we developed a method for generating global N100 fields using a combination of in situ725

measurements, reanalysis data, and machine learning. For evaluating ML model performance at measurement stations and

outside of them, we applied cross-validation to several intermediate models. We also trained global ML models on all available

data and generated daily global N100 fields for 2013.

We found that at least in a simple setting, such as estimating the N100 at a specific location with the single-station models,

our method yields good results. This is especially true for the XGB model. However, some stations were more challenging to730

capture, possibly due to an insufficient number of data points, missing crucial reanalysis variables, or inadequate representation

of sub-grid scale variability in concentrations and other reanalysis data uncertainties. Additionally, ML models—particularly

the MLR model—may struggle to capture the nonlinear interactions between N100 and the reanalysis variables at these stations.

The stations where single-station models struggled remained challenging for all types of intermediate models.

Addressing these limitations is challenging, but future work could explore incorporating additional variables. For example,735

accounting for a station’s position relative to the top of the boundary layer, which might help improve ML model perfor-

mance in high-altitude environments by allowing models to recognize when stations are above it. Additionally, refining the

grid-selection scheme could improve accuracy at stations where sub-grid scale variability causes the reanalysis data to misrep-

resent local conditions. Comparing observed concentrations of key predictor variables with their reanalysis counterparts can

help identify discrepancies. If significant differences emerge, selecting a nearby grid-cell that better represents the measure-740

ment station—such as choosing a land-only grid-cell instead of one that includes both land and ocean—may enhance model

performance.

Our primary approach for evaluating ML model performance in areas without observations was cross-validation using

station-excluded models. For each station, we trained an ML model without station-specific data and assessed how well the

model reproduced the station’s observations. The analysis of these station-excluded models revealed that model performance745

largely depended on whether the training set contained stations with similar characteristics. This analysis suggests that our

global ML models can generalize beyond measurement stations if the environments or conditions resemble the stations in our

training set.

For the final global ML models, we investigated feature importance and model interpretation in more detail. Both global

ML models identified sulphate aerosol and ammonia, carbon monoxide and sulfur dioxide mixing ratios as the most important750

variables. BC and OM mixing ratios were also indicated as important, though their combined contribution was likely minor.

We used the feature importance to interpret some of the model behavior of the MLR model. We noticed that some variables,

such as sea salt aerosol, were represented in ways that do not apply universally across locations and conditions, potentially

impacting ML model performance.

35



The comparison between MLRglobal and XGBglobal fields for 2013 revealed that the models agreed better in Europe, North755

America, and many other densely populated and anthropogenically influenced regions, including the most densely populated

areas in South America, Africa, Middle East, Southern Siberia, South and East Asia. These areas were likely better repre-

sented in the training data, making the ML models potentially more reliable in those regions, though we cannot be certain.

Conversely, the ML models showed greater disagreement in remote areas—such as deserts, polar regions, rainforests, and

oceans—suggesting these environments may be more challenging for the models to capture. Our analysis did not indicate760

whether MLR or XGB model, if either, performed better in these regions.

Overall, both the MLR and XGB models have their advantages and disadvantages, and our analysis could not definitively

determine which model should be used for generating global N100 fields. XGB generally performed better and was able

to capture N100 also in some unique conditions where the MLR model could not. However, in many locations, the MLR

model produced equally good results. Additionally, MLR is less prone to overfitting and can produce better estimates when765

operating outside the range of N100 values in the training set. The MLR model also offers greater interpretability, as its variable

coefficients can help identify areas where the model is likely to fail.

Our approach produces valuable results, even though our estimates did not fully meet the accuracy threshold suggested

by Rosenfeld et al. (2014). At locations outside the training set, only 9 out of 35 stations had at least one ML model with

RMSElog10 values below 0.2, meaning that in most locations, fewer than 70 % of daily N100 concentration estimates fell770

within factor of 1.5 of observations. Still, our method provides useful insights and enables global N100 estimation where

direct observations are unavailable. It complements other observation-based methods, such as satellite-derived approaches or

the method outlined in Block et al. (2024) and can be used to evaluate purely model-driven results. A key advantage of our

method is that it is directly constrained with in situ measurements of N100 rather than relying solely on observations via data

assimilation. Although our global N100 fields were produced for 2013, the global N100 time series can be extended to any period775

covered by CAMS data (currently 2003-2023). Moreover, this methodology could be applied to estimate other atmospheric

variables with available in situ measurements and corresponding reanalysis data. However, it should be noted that ML models

trained with observational data as the target variable cannot be expected to represent these variables reliably in too distinct

conditions – determining pre-industrial or future N100 cannot be done based on present day observations.

Improving and better evaluating the performance and reliability of the global MLR and XGB models in different environ-780

ments and conditions will require additional data. We hope future research investments and collaborations will provide access

to a wider long-term measurement dataset, extending especially towards marine, tropical, southern hemisphere and polar areas

that are underrepresented in the current study. Although adding new data from such measurement stations does not provide

a global reliability estimate, it will allow us to improve and assess the model performance in new environments and condi-

tions with unseen data. Including longer data sets from stations already part of this study will also improve the models, due785

to capturing more variability in the atmospheric conditions at these sites. With the larger measurement data set, it would be

beneficial and straightforward to retrain the global ML models with the method described in this study. We could also explore

using shorter datasets, such as measurement campaign data, for testing the models. While these datasets are too short for model

training, they could enrich the holdout set by introducing environments that lack long-term measurements.
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