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Abstract. The contribution of agricultural emissions of fine particulate matter (PM2.5) poses significant health and 

environmental challenges, particularly in the UK where intensive farming activities contribute to elevated pollutant levels. 

This contribution includes direct emissions and PM2.5 formed through chemical reactions from precursors such as ammonia 

(NH3). The study aims to analyse the impact of series of mitigation measures through emission scenarios (low, medium, high 15 

uptake) on dairy, pig and poultry sectors in 2030 and mainly focusing on NH3 emissions. Under the high uptake scenario, 

NH3 emissions could decrease by up to 13% nationally, with reductions reaching as high as 20% in certain regions. The 

Community Multiscale Air Quality (CMAQ) and the Atmospheric Dispersion Modelling System (ADMS) models were 

used. CMAQ allows to understand the contribution made by agricultural NH3 to secondary PM2.5 at a regional scale, while 

ADMS is used to better understand near-field dispersion and dilution of primary pollutants. Despite the impact of the 20 

changes in emissions due to the mitigation measures compared to the future baseline scenario, changes are not reflected on 

regional scale PM2.5 concentrations since the maximum modelled decrease was around 1-1.5%. This finding is explained by 

an NH3-rich atmosphere reducing the impact of these reductions in NH3 emissions on mitigating PM2.5 concentrations. 

Results from ADMS show that the NH3 and PM2.5 concentrations are quickly dispersed near the farms, highlighting the 

usefulness of local modelling in addressing impact studies on PM2.5 formation near these sources. Indeed, for the five studied 25 

livestock farms, it has been found that 50% of maximum NH3 and PM2.5 concentrations are located within a distance between 

100 and 400m and up to 90% of concentrations have decreased within 700m. The study also demonstrates the 

complementary use of local and regional modelling in understanding PM2.5 dispersion near agricultural areas. The 

comparison with ground-based measurements might suggest a non-representation of atmospheric processes in the PM2.5 

formation by CMAQ (with an underestimation of PM2.5 concentrations by approximately 50%). It underscores the need for 30 

integrated modelling approaches to guide mitigation strategies for both primary and secondary PM2.5, as well as to improve 

understanding of the chemical atmospheric processes involved in the secondary inorganic aerosols.  
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1 Introduction 35 

Air pollution from PM2.5 (fine particulate matter with a mass median aerodynamic diameter <2.5 µm) has been estimated to 

cause millions of premature deaths annually in recent years (Burnett et al., 2018; Kiesewetter et al., 2015; Lelieveld et al., 

2015). PM2.5 poses significant environmental and public health problems due to its ability to penetrate deep into the 

respiratory system, causing various health issues, including respiratory and cardiovascular diseases (Pope and Dockery, 

2006). Therefore, mitigating this PM2.5 pollution is a high priority for environmental protection in many areas such as the 40 

European Union (EU) and in the United Kingdom (UK). 

Among the various components contributing to PM2.5 concentrations, ammonia (NH3) has an important role in secondary 

particulate formation. In the atmosphere, NH3 reacts with acidic compounds such as sulfuric acid (H2SO4) and nitric acid 

(HNO3), forming ammonium sulphate ((NH4)2SO4) and ammonium nitrate (NH4NO3), which are significant constituents of 

PM2.5 (Seinfeld and Pandis, 2016; Wyer et al., 2022). 45 

Resulting of its varied agricultural practices, transport-related emissions, and industrial activities, the UK presents a 

significant case for examining the influence of ammonia (NH3) on PM2.5 levels. NH3 emissions in the UK primarily originate 

from agricultural sources, particularly livestock waste and the application of fertilizers (Misselbrook, et al., 2023). Indeed, 

the most recent figure from the UK National Atmospheric Emissions Inventory (NAEI) shows that agriculture accounted for 

87% of total ammonia emissions in 2021 (NAEI, 2024). These emissions have been shown to vary seasonally and spatially, 50 

influencing the formation and distribution of airborne PM2.5 concentrations (e.g. Wyer et al. 2022). Various mitigation 

measures (i.e. farm practices) have been developed to mitigate emissions of NH3, such as covering slurry stores, or using 

automatic scrapers in housing, however, reducing air pollution from agriculture remains challenging (Jenkins and Wiltshire, 

2024). 

Previous studies have highlighted the importance of understanding the interaction between NH3 and PM2.5 to inform 55 

regulatory measures and mitigate adverse health effects. For instance, the work by Vieno et al. (2014) demonstrated that 

reductions in NH3 emissions could lead to significant decreases in PM2.5 levels, especially in areas with large nitrogen oxides 

(NOx) concentrations, suggesting that targeted strategies in NH3 emission control could be effective in improving air quality. 

Results confirmed by the study of Ge et al. (2023) showing NH3 reductions are more effective for regions or countries with 

better air quality, such as in the UK (compared to Asia, for example) to mitigate PM2.5 concentrations. The impact of NH3 60 

emissions reduction is significantly more efficient with large emission reduction measures (Bessagnet et al., 2014) and 

abating NH3 emissions can even be more cost-effective than NOx for mitigating PM2.5 air pollution (Gu et al., 2021). 

Conversely, other work such as Ge et al., (2022) and Pay et al. (2012), suggested NH3 emissions reduction may only lead to 

minor improvements in airborne PM2.5 concentrations, especially in the UK since the UK is characterized by a NH3-rich 

atmosphere. A study in the United States also showed controlling NH3 became significantly less effective for mitigating 65 

PM2.5 in rural areas (Pan et al., 2024).  
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Due to the complexity of atmospheric chemistry, numerical air quality models such as Chemistry Transport Models (CTMs) 

are commonly used to simulate these processes and assess the effectiveness of potential emission control strategies. CTM 

such as the Community Multiscale Air Quality (CMAQ) model (Appel et al., 2021), developed and distributed by the US 

Environmental Protection Agency (EPA) is a cutting-edge numerical air quality model that comprehensively represents the 70 

emission, formation, destruction, transport, and deposition of numerous air pollutants, including PM2.5 and its precursors. 

CTMs such as CMAQ are designed to calculate background concentrations, i.e. air pollutants’ concentrations at a km scale 

spatial resolution (De Visscher, 2014). 

Local dispersion models like Atmospheric Dispersion Modelling System (ADMS) (Carruthers et al., 1994) can be utilized to 

provide detailed simulations of pollutant dispersion at a finer scale such as 1m. ADMS is particularly effective for assessing 75 

the impact of emissions from specific sources and understanding local air quality variations (Zhong et al., 2023). The 

combination of local dispersion models such as ADMS with CTMs allows a more comprehensive understanding of both 

regional and local air quality dynamics. Indeed, local modelling studies have shown their accuracy in determining the 

dispersion of pollution (Hood et al., 2018; Porwisiak et al., 2024; Zhong et al., 2023). ADMS is by default a steady state 

(non-reactive) Gaussian plume model that predicts pollutant concentrations based on the assumption that both the vertical 80 

and horizontal dispersion of the continuous plume is represented by normal distribution around the plume centreline. 

However, due to the steady state assumption, short range estimates within 10km are recommended (Environmental 

Protection Ireland Agency, 2020). 

The aim of the study was to understand the impact of mitigation measures relating to livestock housing and the storage and 

spreading of manures and slurries on PM2.5 concentrations and was part of an interdisciplinary project named AIM-Health 85 

(Cowie et al., 2025). A companion study has already presented the impact of these policies on NH3 concentrations and 

nitrogen deposition at a regional scale (Pommier et al., 2025). This study primarily focussed on measures to reduce 

emissions from housed dairy, pigs and poultry, while emissions from other sources such as manufactured fertilisers were not 

within its scope. Three intervention scenarios were developed to model the impact on PM2.5 concentrations nationally based 

on differing uptake levels of the mitigation measures across the UK, ranging from low, medium and high. Additionally, local 90 

modelling was done to show how primary emissions of NH3 and PM2.5 disperse within the local vicinity (10km) of farms 

included in this study.  

Section 2 of this paper describes the methodology used for the scenario development and the air quality modelling (regional 

and local). The analysis on the modelled PM2.5 concentrations is presented in Section 3. Section 4 discusses the results and 

Section 5 gives the conclusions. 95 

2 Method 

A series of mitigation measures related to livestock diet, livestock housing and improved storage and spreading of manures 

and slurries were modelled to understand the impact on emissions from housed dairy, pigs and poultry across the UK. The 
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mitigation measures were modelled through scenarios which represented various levels of uptake (low-high) on these farms 

across the UK in 2030.  100 

To undertake the study, the CMAQ model, has been used for the regional modelling. CMAQ is a 3D Eulerian model, 

incorporating the effects of meteorology, emissions, land use, chemistry and aerosol processes on modelled air pollution. It 

has been developed to represent the emission, transport, formation, destruction, and deposition of many air pollutants, 

including nitrogen dioxide (NO2), ozone (O3) and PM2.5. The version used in this study is 5.4 (US EPA Office of Research 

and Development; https://zenodo.org/records/7218076, 2022a). This chemical-transport model requires input from a weather 105 

model, emissions and the background atmospheric composition. For our work, the CMAQ model has been driven by 

meteorological fields from the Weather Research and Forecasting (WRF) model version 4.5 (NCAR, 2022). 

For the local modelling, ADMS version 6 (CERC, 2024) has been used. ADMS is steady-state Gaussian air dispersion model 

that incorporates air dispersion based on planetary boundary layer turbulence structure and scaling concepts, including 

treatment of both surface and elevated sources, and both simple and complex terrain. This model allows calculation of 110 

concentrations of atmospheric pollutants emitted both continuously from point, line, volume and area sources, or 

intermittently. 

2.1 Scenario development 

The list of 19 mitigation measures were identified by European Commission’s Best Available Techniques (BAT) reference 

document for the intensive rearing of poultry or pigs (European Commission. Joint Research Centre., 2017) and Defra’s 115 

Code of Good Agricultural Practice (COGAP) for Reducing Ammonia Emissions (DEFRA, 2024b). The year 2030 was 

chosen due to being 10-years in the future from the start of the research study, therefore establishing a realistic timeline for 

practical implementation of new activities on farms. These measures mainly focus on controlling NH3 emissions and not on 

mitigating the primary PM2.5 emissions from farming activities. 

Three scenarios have been considered: low, medium and high uptake and compared to a baseline in 2030 and defined in the 120 

rest of the document as low2030, medium2030, high2030 and base2030, respectively. The uptake scenarios were developed 

through stakeholder engagement with farmers and stakeholders (i.e. farm advisers, academics and farmer representatives). 

Each scenario includes all 19 mitigation measures, however with varying percentages of uptake, a table presenting levels of 

uptake is presented in Appendix A and a table with descriptions of the mitigation measures is in Appendix B. The uptake 

rates were unique to each mitigation measure in each sector and were reflective of feedback received through engagement 125 

activities. The engagement activities included an online survey, focus groups and one-to-one interviews with participants 

from the dairy, pig and poultry sectors and those in other sectors which utilise manure or slurry. A total of 161 people took 

part in the activities. Full results and methodology are detailed in Jenkins and Wiltshire (2024). 

Discussions in these activities were centred around understanding the current level of uptake and the benefits and barriers 

associated with the mitigation measures to determine a potential future uptake. If a mitigation measure was received 130 

positively, it was estimated to have a higher uptake compared to measures that were received negatively by participants. This 
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was determined in the final level of uptake for each scenario. The future uptake did not take account of any potential changes 

to legislation that may have an impact as this information is not known, additionally there were no different uptakes for each 

part of the UK due to a lack of data. 

To determine the emission reduction associated with each mitigation measure, the Scenario Modelling Tool (SMT) was used 135 

(Ricardo EE, 2021). The SMT is a model for the management and analysis of complex scenarios of mitigation of air quality 

and greenhouse gas emissions from agricultural sources in the UK. In this work, the model implements a mass flow model to 

track pollutant transfer between each of the locations on a farm, to correctly reflect the cascade of mitigation effects along 

the manure management chain. 

The SMT calculates the effect on emissions of each scenario by adding measures with emission reduction values and uptake 140 

rates. It allows designing mitigation measures using the effect on emissions (as a percentage reduction), cost, and targeting 

(the point in the agricultural system/manure management chain at which the effect on emissions is felt). Uptake rates are 

used in the SMT, allowing for the uptake of each measure to be reflected as a percentage of a cohort of farms (e.g., fixed 

slurry cover can be applied to 15% of dairy farms). It is worth noting that the cost impact of the measures is not discussed in 

this study. 145 

There are different ways that the various types of measures are calculated within the SMT. In this study, ‘Emission’ and 

‘Reduction’ measures were used. ‘Emission’ measures directly reduce the pollutant emission factor at a location on a farm. 

This type of measure represents changes in practice or technical solutions and is not typically used where a measure 

represents a change in the overall management system. ‘Reduction’ measures reduce the quantity of a source of emissions 

(e.g. the number of animals in housing or the quantity of excreta in housing). This reduction is reflected in emissions 150 

occurring at all associated locations. In this study, the only ‘Reduction’ measures used related to extended grazing on dairy 

farms and low protein diets in dairy, pig, and poultry farms. For the low protein diet measures the quantity of excreta was 

reduced, while for the extended grazing the quantity of managed solid and liquid manure was reduced. All other measures 

were implemented as ‘Emission’ measures; directly reducing the emission factors at relevant locations.  

The SMT comes with a default library of mitigation measures and associated emission reduction factors. These emission 155 

reduction factors have been calculated based on empirical evidence and published scientific literature; primarily UK based, 

and with reference to relevant international studies and the UNECE Task Force for Reactive Nitrogen Ammonia Abatement 

Guidance Document (Bittman et al., 2014). The mitigation impact of these measures from the SMT is verified for accuracy 

by comparison with data from the Agricultural Ammonia and Greenhouse Gas Inventory (AAGHGI) (Misselbrook, et al., 

2023).  160 

Eleven measures that were included in the modelling in this project were not included in the pre-defined measure library. 

This uses COGAP, BAT and expert knowledge to determine how to reflect these measures in the SMT (including what 

stage(s) in the agricultural system the measure is relevant to and if it is an ‘Emission’ or a ‘Reduction’ measure), as well as 

the emission reduction potential. This information was added to the SMT using the ‘Measure’ function as outlined above.   
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The calculation of measure effect takes account of measure interactions, including the order of implementation and 165 

exclusivity, and employ the principal of maximum overlap of uptake and a multiplicative effects model, in line with similar, 

earlier models such as National Ammonia Reduction and Strategies Evaluation System (NARSES) (Webb et al., 2006; Webb 

and Misselbrook, 2004). Baseline emission data comes from the AAGHGI (Misselbrook, et al., 2023). The data set for the 

year 2019 was used as baseline as it was the most recent submission at the time of running the scenarios. 

2.2 Regional modelling: CMAQ 170 

2.2.1 Model set-up 

The CMAQ model, calculating the pollutants’ concentrations and depositions, was setup using the same vertical and 

horizontal grid structure as for WRF, modelling the meteorology. Atmospheric chemistry was simulated using the carbon 

bond mechanism (CB06r5) (Luecken et al., 2019) combined with the aerosol mechanism using the 7th generation aerosol 

module (AERO7) (Pye et al., 2017). The configurations of the WRF and CMAQ models are given in Table 1. 175 

Table 1: Summary of WRF and CMAQ modelling settings 

WRF configuration – version 4.5 Scheme 

Longwave radiation Rapid Radiation Transfer Model Global (Iacono et al., 

2008) 

Shortwave radiation Dudhia (Dudhia, 1989) 

Planetary boundary layer ACM2 (Pleim, 2007) 

surface layer Pleim (Pleim, 2006) 

Land-Surface Rapid Update Cycle (RUC) (Smirnova et al., 2016)  

Cumulus Kain-Fritsch (Kain, 2004) 

Land use classification   Noah-modified 21-category IGBP-MODIS (Friedl et al., 

2002) 

CMAQ configuration - version 5.4 Scheme 

chemistry Cb6r5 (Luecken et al., 2019) 

aerosol  Aero7 (Pye et al., 2017) 

aerosol deposition parameterization M3Dry (Hogrefe et al., 2023) 

 

A nested modelling approach has been employed, dividing the broader geographic area into smaller domains to enhance 

spatial resolution. This hierarchical structure enables more accurate representation of variations in emissions and 

meteorological conditions. The outer domain, covering Europe, uses a horizontal resolution of 50 km (EU50), while the 180 

inner domain focuses on the UK with a finer resolution of 10 km (UK10), as illustrated in Figure 1. 
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Figure 1: a) Regional nested modelling domains and location of the studied farms. The white box corresponds to the European 

domain at 50 km × 50 km horizontal resolution (EU50) and the red box to the UK domain at 10 km × 10 km horizontal resolution 

(UK10). Each farm is shown with a pink coral circle. b) Zoom on the location of each studied farm with their corresponding id. 185 
The details on the farms are provided in Table 2. 

The selected meteorological year used in the air quality simulations was 2019. The year 2019 has been chosen as the 

reference year since it was defined as a typical meteorological year in the UK (see Pommier et al. 2025 and references 

within) and 2019 was also the most recent UK emissions year at the beginning of the project. This historical 2019 simulation 

has been used for model performance evaluation prior the analysis of the future predictions with the scenarios. The future 190 

scenarios solely focused on change in emissions and no climate projection has been undertaken. 

The regional simulation started with a spin-up period of 2 weeks. The simulation setup follows a 'forecast-cycling' approach, 

where the output fields from each run were used to initialize the simulation for the following day. This process has been 

applied continuously throughout the entire year of 2019 for both the EU50 and UK10 domains. The initial and boundary 

conditions for the outermost domain (EU50) were created using hemispheric CMAQ outputs for the year 2016 provided by 195 

the US EPA (US EPA Office Of Research And Development, 2022b). Subsequently, the CMAQ concentrations computed 

within the EU50 domain were used as boundary conditions for the nested UK10 domain.  

2.2.2 Emissions 

The anthropogenic emissions data from the European Monitoring and Evaluation Programme (EMEP) (CEIP, 2022) were 

post-processed into 50 × 50 km to populate our EU50 domain in CMAQ. The UK anthropogenic emissions, including from 200 

agriculture, were based on the gridded emissions from the UK National Atmospheric Emission Inventory (NAEI) for 2019 
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(Churchill et al., 2021). The NAEI provides gridded emissions data at a 1 km × 1 km resolution, which was post-processed 

to match the 10 km × 10 km resolution of the UK10 domain. Additionally, the 2019 large point source emission inventory 

was used to vertically distribute emissions within the CMAQ grid. 

The baseline 2030 future scenario for the EU50 domain was based on the EMEP gridded emissions for 2019 and scaled with 205 

the factors provided by the GAINS ECLIPSE (Greenhouse Gas and Air Pollution INteractions and Synergies - Evaluating 

the Climate and Air Quality Impacts of Short-Lived Pollutants) V6b Baseline CLE scenario (IIASA, 2019).  

With the exception of the UK base2030 scenario, all UK scenarios incorporate the same set of measures. The increasing 

adoption of these measures across the low2030, medium2030, and high2030 scenarios reflects progressively higher ambition 

in reducing air pollutant emissions as described in Section 2.1.  210 

Figure 2 shows the total UK anthropogenic emissions as used in CMAQ and highlights the main changes in these emissions 

for the different scenarios. Since the mitigation measures mainly tackle the NH3 emissions, this explains the large decrease 

calculated for this pollutant. As explained in Pommier et al. (2025), the reduction in NH3 emissions could reach up to 20%, 

22%, and 24% in certain regions under the low2030, medium2030, and high2030 mitigation scenarios, respectively. 

A constant decrease in carbon monoxide (CO) is predicted across all scenarios. Unlike other pollutants, this trend is 215 

influenced not only by the selected mitigation measures but also by the scope of the SMT model, which does not fully 

capture all future CO emission sources. Slightly larger reductions in emissions are calculated for the high2030 scenario for 

volatile organic compounds (VOCs) and the coarse PM (PM10, PM with an aerodynamic diameter lower than 10 µm), while 

the changes in NOx and PM2.5 remain limited, and null for sulphur dioxide (SO2). 

CMAQ also calculates biogenic emissions with an online module incorporated in the model. This uses the Model of 220 

Emissions of Gases and Aerosols from Nature (MEGAN) (version 3.2) (Guenther et al., 2020). CMAQ also calculates 

windblow dust (Foroutan et al., 2017) and sea spray emissions (Gantt et al., 2015; Kelly et al., 2010) with online modules.  

These emissions are identical in all scenarios. 
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Figure 2: Total UK anthropogenic emissions in tonnes for the different scenarios used by CMAQ for NH3, NOx, SO2, VOC, CO, 

PM2.5, and PM10. The relative difference for the low2030, medium2030 and high2030 scenarios compared to the base2030 are given 225 
below each corresponding bar. 

2.3 Local dispersion modelling: ADMS 

2.3.1 Model setup 

For the local modelling, meteorological datasets were procured from National Oceanic and Atmospheric Administration 

(NOAA) weather stations ranging from 6km to 25km from farms in this study, where data capture was poor filling was 230 

undertaken to ensure data capture is higher than 85% for all parameters including wind speed, wind direction, cloud cover, 

temperature and precipitation. 2019 was selected as this year is consistent with the existing baseline year of the regional 

model. 

Each farm had a 15km-by-15km points grid centred at the farm with a 100m resolution. This was overlayed with the 

CORINE Land Cover 2018 100m data (European Environment Agency, 2019) to extract map codes for each grid point. The 235 

land use classifications were associated with a surface roughness ranging between 0.04025 (water) and 1.3 (urban areas) in 

Aermet, the meteorological pre-processor for Aermod (Support Center for Regulatory Atmospheric Modeling, 2017 

Appendix W Final Rule). NH3 deposition was considered by using deposition velocities that vary depending on the surface. 

The deposition velocity values used for NH3 vary between 0.02 m/s for lower plants (lowland shrubs, grassland) and 0.03 
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m/s for higher plants (woodlands) (Natural Resources Wales, 2021). Plume depletion was turned on in ADMS, this means 240 

that atmospheric concentrations of NH3 and PM2.5 decrease due to dry and wet deposition. 

The requirement for complex terrain was established using the Environment Agency’s 1m Lidar data (DEFRA, 2023) to see 

if it met Defra’s Local Air Quality Management modelling requirement (> 1:10) (DEFRA, 2022) for any of the farms. None 

of the farms displayed a terrain of 1:10 or above and so complex terrain was omitted from the model. 

ADMS can include buildings to simulate the impact of building downwash for point sources only, air recirculation leeward 245 

(downwind) of the building. Buildings within a distance three times the mechanical ventilation stack height were included to 

estimate the potential of increased concentrations very close to the source. 

The CMAQ modelled concentrations were used as background concentrations for NH3 and PM2.5. Indeed, the concentrations 

calculated by CMAQ or other CTMs with a somewhat-coarse resolution are mostly representative of the background 

conditions. 250 

2.3.2 Emissions 

The emissions in the regional modelling have been calculated with the SMT, based on national emissions, whereas the local 

modelling has used a combination of emission rates derived from measurements undertaken as part of this project (Leonard 

and Wiltshire, 2025) and in the absence of measured emissions the Simple Calculation of Atmospheric Impact Limits 

(SCAIL) agricultural emission inventory (Hill et al., 2014) has been used.  255 

As such local modelling has focused on five farms to reflect locations included in the measurement campaign. These farms 

have remained anonymous for the study. Details on the farms included in local modelling such as livestock type, number of 

sources, those that include measured or SCAIL emission inventories and mitigation have been detailed in Table 2. 

The local dispersion modelling for all studied farms uses the same methodology, except for the development of the emission 

rates which was unique to each farm depending on availability of activity and monitoring data from farms. However, farm 260 

activity and monitoring data were reviewed in a consistent approach across each farm with the final data used varying to 

reflect level of detail available. The further sub-sections detail the methodology adopted across all farms. 

 

Table 2: Farms included in local dispersion modelling. 

Farm Type of 

livestock 

Sources Measured or SCAIL sources Mitigation 

One Pig Two mechanically 

ventilated housing units 

with 4 fans each and 2 

slurry lagoons 

Measured at both housing 

units. 

SCAIL emission rate for 

slurry lagoon. 

Housing - ventilation 

scrubber 

NH3 80% NH3 reduction 

(SMT) 

PM2.5 60% PM2.5 reduction 
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(European Commission. Joint 

Research Centre., 2017)  

Slurry lagoon 

Floating cover 60% NH3 

(SMT) 

Two Pig One naturally ventilated 

housing unit, 11 

Mechanically ventilated 

housing units with 25 fans 

and 2 manure piles 

SCAIL at naturally 

ventilated, 1 mechanically 

ventilated and 2 manure 

piles. Measured at 10 

mechanically ventilated. 

Housing - ventilation 

scrubber 

NH3 80% NH3 reduction 

(SMT) 

PM2.5 60% PM2.5 reduction 

(European Commission. Joint 

Research Centre., 2017) 

Manure piles 

Manure cover 60% NH3 

(SMT) 

Three Poultry, 

broilers 

Eight  mechanically 

ventilated housing units 

Measured at 8 mechanically 

ventilated housing units 

Housing - ventilation 

scrubber 

NH3 80% NH3 reduction 

(SMT) 

PM2.5 35% PM2.5 reduction 

(European Commission. Joint 

Research Centre., 2017) 

Four Poultry, 

broilers 

Three mechanically 

ventilated housing units 

Measured at 3 mechanically 

ventilated housing units 

Housing- ventilation 

scrubber 

NH3 80% NH3 reduction 

(SMT) 

PM2.5 35% PM2.5 reduction 

(European Commission. Joint 

Research Centre., 2017) 

Five Dairy  Five naturally ventilated 

housing units, 1 manure 

pile, 1 yard, 1 slurry 

lagoon and 1 grazing area. 

One measured naturally 

ventilated housing unit. 

Remaining sources used 

SCAIL. 

Grazing 

Extend grazing period from 4 

to 9 months (SMT). No % 

reduction applied to 
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pollutants, lower housing 

emissions achieved extending 

duration livestock are in 

pastures. 

 265 

Detailed questionnaire, interview results and pollutant (NH3 and PM2.5) measurements collected from each farm in this study 

were reviewed to establish ADMS’ source type representation such as point, volume and area and extent of time varying 

profile to apply. The primary emission data used in the modelling has used the same quality assurance protocol detailed 

within the measurement study (Leonard and Wiltshire, 2025), with monitoring data being processed into hourly averages to 

reflect hourly meteorological limitations of ADMS. The measurement, questionnaire and interview results were used to 270 

establish existing emission profiles, any existing mitigation measures to lower NH3 or PM2.5 were reflected in the baseline. 

However, none of the mitigation measures recommended in this study (Jenkins and Wiltshire, 2024) were in place at farms 

(Leonard and Wiltshire, 2025). The order of preference for time varying emission profile development, with most preferred 

to least preferred below: 

- Preferred emission profile - unique calculation for every hour in year 275 

An emission rate (g/s) for every hour in a year is the most detailed emission input option in ADMS 6, as emission 

measurements at farms were undertaken for periods over 2022 and 2023 did not represent a full year of measured emissions 

from sources. As such the most detailed option available for each farm would be to develop an emission rate (g/s) for every 

hour in the animal cycle, then extrapolate this over a year based on reports of all the animal cycles in a year. There was only 

sufficient monitoring and animal cycle data for each hour to have an emission rate at farm four (poultry). As there are only 280 

housing emission sources at farm four every source on this farm was based on an individually calculated emission rate for 

every hour in a year. 

- 2nd emission profile preference – annual average emission rate for each hour in a day 

The next level of detail available to develop time varying emission profiles at each farm was to calculate annual average 

hourly emission rates (g/s) for the application of a diurnal profile in local modelling. This was applied to sources on farms 285 

one (pig), two (pig), three (poultry) and five (dairy) with measurement data. At pig farms one and two, this profile was 

applied to housing units with measurement data, but also to housing units based on the SCAIL emission inventory as the 

profile was considered relevant. At farm three (poultry) a diurnal profile based on annual average hourly emission rates (g/s) 

was applied to all housing units. The milking and loafing area on farm five was the only building with emission 

measurements and the only building with a diurnal profile applied. Loafing areas are where cows on-lying, non-passageway, 290 

non-feeding spaces enable cows’ freedom to express normal behaviour, such as grooming and heat expression. Grazing areas 

and housing for cattle that graze had two unique emission rates to reflect time of year grazing and housed. 

- 3rd emission profile preference – constant emission rate for all hours in a year 
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The lowest level of detail is where no measurement or activity data was available to understand how annual emissions 

should vary throughout the day and or year. In this situation annual emissions are divided by the number seconds in a year to 295 

derive a constant (g/s) for all hours in a year. No diurnal profile was applied to slurry and manure lagoons at farms one and 

two. At farm five (dairy) no diurnal profile was applied to the yard, slurry lagoon or manure piles. 

Information on emission sources including dimensions, fan height, diameter, exit velocity were derived from farmer data 

requests and interviews. Housing temperature data was derived from either farm owned temperature sensors if available, or 

from project monitoring equipment. Project measurements of NH3 and PM2.5 were processed to get either average NH3 and 300 

PM2.5 emission rates for each hour in an animal cycle or the entire measurement period. The processing of NH3 and PM2.5 

measurement data are shown in Equation 1 and 2, respectively. Equations 1 and 2 are relevant for each individual hour in a 

flock cycle or period hourly average emissions. 

 

 ERNH3 = CNH3 × Q × Rmolecular × cmass (1) 

ERNH3 corresponds to the NH3 emission rate (g/s), CNH3 is the period or animal cycle hourly average NH3 concentration 305 

(ppb), Q the volumetric flow rate (m3/s) and Rmolecular is the ratio between the molecular weight and molecular volume and 

cmass the conversion constant (106). 

 

 ERPM2.5 = CPM2.5 × Q × cmass (2) 

With ERPM2.5 being the PM2.5 emission rate (g/s), CPM2.5 the period or animal cycle hourly average PM2.5 concentration 

(µg/m3), Q the volumetric flow rate (m3/s) and cmass the conversion constant (106). 310 

 

For instances where emission rate values could not be calculated, the SCAIL emission inventory was used. SCAIL emission 

rates are provided as kg/m2 or kg per animal place per year, as such the area of sources and number of livestock were used in 

this equation to derive NH3 and PM10 kg/year. SCAIL emission rates are in PM10 and this was converted into PM2.5 by 

looking at the ratio between PM10 and PM2.5 at Defra’s Automatic Urban and Rural Network (AURN) rural background 315 

monitoring stations available at the UK AIR platform (DEFRA, 2024a) to derive a factor of 0.58. The measured emission 

rates were adjusted using Equation 3 for comparison with SCAIL annual emission (kg/year). This calculation assumes that 

the emission rate of one fan is representative of the concentration of the pollutant throughout the building and therefore can 

be scaled up using the building volume. 

 EF = ER × Vbuilding × cmass × ctime (3) 

With EF the emission factor (kg/yr), ER the hourly average emission rate (µg/(m3.h)), cmass the conversion constant (109) and 320 

ctime the time conversion constant (24×365). 

- Mitigation scenario emission calculations 
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In the mitigation scenario, each emission source and associated percentage reduction from mitigation detailed in Table 2 

were applied to emission rates (g/s). For example, acid scrubbers are applicable treatment of ventilated air at farm one animal 

housing and the emission rate (g/s) is multiplied by 0.2 and 0.4 to reflect the proposed 80% and 60% reduction in NH3 and 325 

PM2.5, respectively. 

3 Change in PM2.5 concentrations 

3.1 Regional Scale 

3.1.1 Evaluation of the historical simulation 

The modelled concentrations have been evaluated in using the historical simulation in 2019. Only PM2.5 measurement data 330 

for rural background sites with at least 75% data capture in the year are used to avoid bias. The observations were 

downloaded from the UK AIR platform. This represents a total of 48 stations. The CMAQ annual map and the comparison 

with the observations at the measurement sites are shown in Figure 3. The statistics used in this evaluation are described in 

Appendix C. 

While the comparison shows a fair agreement in the correlation (r ~ 0.6), a clear underestimation in the modelled 335 

concentrations is calculated (mean bias (MB) ~ 5 µg/m3; normalized mean bias (NMB) ~ -51%). This approximately 50% 

underestimation in the modelled PM2.5 concentrations echoes the 50% homogenous increase in NH3 emissions (and 60% 

decrease in SO2 emissions) applied by Kelly et al. (2023) and Marais et al. (2023) in using a similar emissions inventory 

(NAEI for the year 2019) in their simulations to obtain a reasonable agreement in their calculated PM2.5 concentrations with 

their global CTM (r=0.66, NMB=-11%). However, it is worth noting a sensitivity simulation, by increasing our UK NH3 340 

emissions by 50% was also tested. Despite this large change in the 2019 NH3 emission, no real improvement in the 

comparison with the observations was found (Fig. S1). This confirms the finding in Pommier et al. (2025) showing NH3 is 

not ‘limiting’, thus NH3 emissions changes will have a negligible on mitigating secondary inorganic aerosols (SIA) 

formation at regional scale. Kelly et al. (2023) also explained with NH3 being in excess, the emissions scaling applied to NH3 

to resolve differences between top-down and bottom-up emissions estimates has only a limited effect on NH4 and PM2.5. 345 

This might also suggest unrepresented atmospheric processes in the model between NH3 and the PM2.5 formation since this 

50% increase in NH3 emission leads to an overestimation of the modelled NH3 concentrations (Pommier et al., 2025). For 

example, this could be a result of combined missing processes since the bi-directional NH3 flux representation has not been 

implemented in this CMAQ simulation and this bidirectional treatment of NH3 fluxes should improve the prediction of NH3 

(e.g. Pleim et al., 2019). It has been noted that assimilating satellite NH3 observations help to improve the models’ 350 

performance to calculate the surface SIA concentrations (e.g. Momeni et al., 2024). In addition, dry PM2.5 concentrations has 

been used in the comparison and, without being the major contributor of these differences with the observations, the effect of 
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aerosol water on the mass closure of PM2.5 can influence the value in the total PM2.5 concentrations (AQEG, 2012; Kelly et 

al., 2023; Tsyro, 2005).  

It is worth noting the main PM2.5 component calculated by CMAQ for these stations is NO3 (Tab. S1) and this composition 355 

spatially varies as shown on the maps (Fig. S2).  

In the baseline 2019 simulation, a low Mean Relative Error (MRE ~ -0.5 %) has been calculated while the Root-Mean-

Square Error (RMSE ~ 5 µg/m3) and IOA (~0.4) are not fully satisfactory. 

 

Figure 3: a) Spatial distribution of annual mean PM2.5 concentrations in µg/m3 calculated by CMAQ at 10 km resolution in 2019. 

The measured concentrations at the monitoring stations are shown with the coloured circles. b) Comparison between these annual 360 
measured concentrations with the modelled values in 2019. Only the background stations with a data capture higher than 75% are 

used. Insert values are the Pearson correlation coefficient (R), the mean bias (MB), the normalized mean bias (NMB), the mean 

relative error (MRE), the root-mean-square error (RMSE), and the index of agreement (IOA). The blue line represents the linear 

fit and dashed black line is the 1:1 slope. 

3.1.2 Future changes  365 

Reductions in NH3 emissions are effective at reducing NH3 concentrations and its deposition at a regional scale (10 km × 10 

km) as shown in Pommier et al. (2025) (e.g. up to 22% reduction in the high2030 scenario) but considerably less effective at 

reducing ammonium (NH4) since the UK is characterized by an NH3-rich chemical domain. This confirms the finding that 

the decrease in NH3 emissions only has limited effects on mitigating SIA formation found by Ge et al. (2022) and that rural 

areas are less sensitive to changes in NH3 (Pan et al., 2024). Consequently, the PM2.5 concentrations are only slightly 370 

impacted by the mitigation on agricultural activities implemented in our scenarios, as shown in Figure 4. Indeed, the 

reduction in the annual mean PM2.5 concentrations is marginal for the three scenarios, since the largest calculated reduction is 

around 1.2%, 1.3% and 1.5% for the low2030, medium2030 and high2030 scenario, respectively; and the mean reduction is 

nearly null. 
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At the opposite, Ge et al. (2023) showed an important impact of the NH3 emission reduction in PM2.5 concentrations in the 375 

UK. The results in Ge et al. (2023) are not comparable with our study, since their analysis was based on a large decrease in 

the emissions, 4 times larger than our more ambitious mitigation (high2030) scenario. This difference in the assumption of 

the emissions’ reduction, has a crucial impact on the atmospheric chemical regime and so changing the influence of NH3 in 

the SIA formation. 

Moreover, the scenarios have focused on mitigating NH3 emissions, while targeting other secondary PM2.5 precursors (NOx 380 

and SOx) can be needed to effectively curb the PM2.5 exposure (Marais et al., 2023; Pastorino et al., 2024).  

 

Figure 4: a) Spatial distribution of annual mean PM2.5 concentrations in µg/m3 calculated by CMAQ at 10 km resolution for the 

base2030 scenario. Relative difference of the same distribution with the low2030 (b), medium2030 (c) and high2030 (d) scenarios. 

The minimum, maximum, mean, and median relative difference values in the whole UK10 domain (in black) and for the UK land 

grid cells (blue) are provided. The relative difference is calculated as follow: ((scenario-base)/base) × 100%. 385 
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3.2 Local scale: dispersion near the farms 

Regional modelling has been used to estimate the contribution of agricultural NH3 to the formation of secondary PM2.5 at a 

regional scale, whereas local scale modelling has been used to investigate dispersion of NH3 and PM2.5 closer to farms 

(within 10km). This is a different modelling approach to the regional modelling that includes atmospheric chemistry to 

estimate PM2.5 through primary contributions and secondary formation, a non-steady state (reactive chemistry) option was 390 

reviewed in the local modelling, although secondary formation was lower than 1% of total PM2.5 in the 10km study area and 

discounted from modelling. However, both modelling approaches are linked since the regional modelled concentrations have 

been used to define the background concentrations.  

As detailed in Section 2.1, low to high mitigation refers to mitigation uptake by number of farms, but local modelling 

focuses on five specific farms and variable uptake values are not relevant. Instead, consistent NH3 impact values (percentage 395 

reduction) were adopted between regional and local modelling, with PM2.5 impact values (percentage reductions) derived 

separately through best practice agricultural guidance (European Commission. Joint Research Centre., 2017). Mitigation 

measures were assessed in the local modelling scenario to gauge the maximum potential benefit on pollutant concentrations 

in local vicinity of farms. 

Figure 5 represents study farm’s contributions of NH3 and primary PM2.5 under existing farm operations (base2030), under 400 

the mitigation scenario and their differences. The mitigation scenario for the local modelling features all measures from the 

low2030, medium2030 and high2030 scenarios, whereas regional modelling represented increasing percentage uptake 

nationally from low to high scenarios, local modelling implemented mitigation measures relevant for specific farms. As 

reminder, the mitigation measures for each farm are described in Table 2. 

Across the existing and mitigation scenarios the greatest distance for concentrations of NH3 and PM2.5 to reach 10% of the 405 

maximum is 700 metres (Fig. 5a). The distance at which concentrations reach 10% of the maximum varies depending on 

many local scale dispersion parameters at the farm and meteorology, such as air flow release rate (m/s), temperature (ºC), 

wind speed (m/s) and direction (º) and impact of building downwash.  

50% of air pollutant concentrations from farm two are dispersed at a closer distance (100m) than other farms due to an air 

flow rate of 5.1 m/s, whereas farms one, four and five have a flow rate ranging between 7 and 11.5 m/s which contributes to 410 

the plume grounding at a closer distance to farm two. 

It is worth noting that the mitigation scenario solely impacts the distance of spread of the pollutants for the farm three, while 

the distances where the 50% of NH3 and primary PM2.5 concentrations are dispersed; and the distances where 10% of their 

maximum concentrations are found are identical for the other farms (Figs. 5b & c). 

 415 
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Figure 5: a) Farm’s contributions of NH3 and primary PM2.5 given as a distance in meters where the concentration if 50% or 10% 

of maximum for the base2030 scenario (a) and the mitigation scenario (b). 
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The difference in concentrations between the mitigation and base2030 scenarios are presented in Table 3 in terms of 

maximum concentration in a 10km2 area, and maximum concentration for sensitive receptors. Table 3 shows that within 1km 

of farms included in this study there can be reductions between 25 and 80% of total NH3 concentrations and 4 and 60% 420 

reductions of PM2.5.  

The biggest reductions in pollutant concentrations occur at farm one and two, which are pig farms and the abatement 

measure with the biggest benefit is an acid scrubber used to reduce emissions from housing and as shown in Table 2 is 

estimated to achieve an 80% reduction in NH3 and 60% reduction in PM2.5 emissions.  

The only other relevant mitigation measure included at farms one and two would be to provide a cover over open manure 425 

and or slurry lagoons, however this has a smaller 60% reduction of only NH3 emissions and will have a smaller impact on 

NH3 concentrations than the acid scrubber. While acid scrubbers and manure/slurry covers are included in modelling of 

estimated concentration the biggest will come from acid scrubbers. 

 

Table 3: Percent difference in concentrations between base2030 and mitigation scenarios. 430 

Farm 

Reduction in max concentration in 10km2 

study area (µg/m3) 

Reduction in max concentration for 

sensitive receptors (µg/m3) 

PM2.5 NH3 PM2.5 NH3 

Farm one (pig)  -60% -79% -60% -80% 

Farm two (pig) -60% -63% -60% -64% 

Farm three (poultry, broilers) -13% -25% -31% -71% 

Farm four (poultry, broilers) -35% -80% -34% -80% 

Farm five (dairy) -4% -43% -7% -33% 

 

4 Discussion 

The design of the emission scenarios was based on the views of farmers, advisers, academics, and representatives from 

relevant sectors, capturing diverse perspectives and making the uptake scenarios grounded in real-world practices and 

challenges. This approach also considered the actual barriers and incentives that farmers experience, leading to realistic 435 

projections of mitigation measure uptake. Using multiple engagement tools (online surveys, focus groups, and one-on-one 

interviews) also enabled the gathering of in-depth, well-rounded data, providing a nuanced understanding of the factors 

influencing uptake. However, it is worth noting that the future uptake projections did not account for potential changes in 

legislation, which could significantly impact the adoption of mitigation measures. This limits the ability to predict uptake 

under different regulatory environments. Moreover, the method has not differentiated uptake scenarios between different 440 

parts of the UK due to a lack of data, potentially overlooking regional variations in farming practices, environmental 

conditions, or economic incentives. The study has also relied on subjective feedback, which can vary widely between 
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individuals or groups. This can introduce bias in determining which measures are positively or negatively received, 

potentially affecting the estimated uptake rates. 

Although CMAQ is state of the art and widely used in scientific research and policy development, the models also has 445 

uncertainties. The analysis presented in this study rely on the accuracy of the simulation which is subject to any uncertainties 

in the model’s specific parameterization of atmospheric processes, as well as uncertainties in the emission inventory and 

meteorology input. It has been shown that CMAQ does not perfectly model the interactions between NH3 emissions and the 

PM2.5 formation which can be explained by the local processes causing the majority of NH3 to be dispersed near the studied 

farms as highlighted by ADMS results showing a 90% decrease in concentrations within 700 metres of farms. This study 450 

confirms the findings from Pan et al. (2024) arguing for more collocated aerosol and precursor observations for better 

characterization of SIA formation.  

The limited impact of the mitigation measures at a regional scale, which mainly target the NH3 emissions, on PM2.5 

concentrations is due to an NH3-rich atmosphere in the UK and highlights that other precursor of these PM2.5 and the primary 

PM2.5 emissions need to be tackled. This also highlights that exposure on secondary PM2.5 near the farms needs also to be 455 

investigated while most air quality studies focus on total PM2.5 concentrations. ADMS has showed that the majority (90%) of 

secondary PM2.5 precursor NH3 emissions and primary PM2.5 is dispersed within 700 metres of farms. This supports 

conclusions from CMAQ of little impact on a regional scale as most relevant exposure is beyond 700 metres of farms. An 

area of further work is recommended to review the impact of mitigation measures on primary and secondary PM2.5 at 

relevant human health exposure within 1 to 10km of farms, as national exposure weights impact towards locations where the 460 

majority of primary pollution has dispersed. 

Limitations in the local modelling include uncertainties associated with project measurement data and associated activity 

data from farms. The project measurement study (Leonard and Wiltshire, 2025) should be referenced for the full suite of 

limitations associated with project measurement data, however the main aspects that affect emission rates developed for 

local modelling includes representativeness of measurement location for entire housing unit, that measurements did not span 465 

an entire animal cycle at farms one, two and five. Regarding representativeness of measurements, at farms three and five 

housing air was sampled with a multiplexer, a device that samples air from multiple locations, whereas measurements at 

other farms only sampled air from one location. As such a limitation of emission rates used in modelling is the assumption 

emission rates are representative for the entire animal housing unit. Measurement data did not span entire animal lifecycles 

at farms one, two and five and as such the project measurement data and housing emissions rates are limited in how 470 

representative they are of each animal lifecycle. Further to this, farms one, two and five did not record animals in each 

housing unit for each day of the measurement period and over the animal lifecycle, instead assumptions were made on the 

total number of animals apportioned to each housing unit. Consequently, there is uncertainty regarding animal numbers in 

each housing unit and extrapolations made for the annual animal places at farms one, two and five. Whilst farms two and 

three had measurements for the entire animal cycle, like farms one and two measured fan flow rates were not available 475 

during the measurement period and ventilation manufacturer’s records were used to develop air flow rates. Whilst there are 
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limitations in data used, replacing emission and flow rate assumptions is unlikely to alter that the majority of pollution is 

grounded in the nearfield (<1km) of farms, since agricultural sources are emitted from lower heights (<6m) and have low air 

flow rates relative to other sources such as engine exhausts. 

5 Conclusions 480 

This study highlights the complex interactions between NH₃ emissions from farming activities and PM2.5 formation in the 

UK, with a focus on dairy, pig, and poultry sectors. Using both CMAQ model for regional-scale analysis and ADMS for 

local-scale dispersion, this work has evaluated the impact of mitigation measures under various uptake scenarios on reducing 

emissions, especially on NH3. Although emission reductions, particularly in NH3, were predicted under high uptake scenario, 

these changes did not translate into significant reductions in regional-scale PM2.5 concentrations, with a maximum decrease 485 

of only 1.5%. This outcome is attributed to the NH3-rich atmosphere, which diminishes the effect of NH3 reductions on 

PM2.5 mitigation. 

The findings also reveal discrepancies between CMAQ model concentrations and ground-based measurements, suggesting 

that key atmospheric processes influencing PM2.5 formation may not be fully represented in the model, leading to an 

underestimation of PM2.5 concentrations by approximately 50%. ADMS results further show that NH3 is rapidly dispersed 490 

near the farms, indicating a limited role of these emissions in the formation of PM2.5 locally. The study has emphasized the 

need for integrated modelling approaches and better characterization of SIA formation, as well as the importance of 

addressing the primary PM2.5 and other PM2.5 precursors beyond NH₃ to achieve effective air quality improvements. 

Overall, this suggested limited impact on potential NH3-focused mitigation strategies on PM2.5 concentrations underscores 

the necessity of exploring additional emission control measures targeting other precursors and primary PM2.5 emissions from 495 

the farming sector. Indeed, further work is recommended to review the national benefit of mitigation on primary PM2.5 

emissions, however benefits of mitigation are likely to be localised on PM2.5 as demonstrated by ADMS modelling. Future 

research should also focus on primary and secondary PM2.5 exposure separately near farms, as current air quality studies 

predominantly assess total PM2.5 concentrations, and further work is required to understand the impact of secondary PM2.5 on 

health. This work advocates for a more holistic approach to modelling and mitigation to better inform policies aimed at 500 

improving air quality in agricultural regions. 

The study has looked at regional exposure to PM2.5 from agricultural sources in CMAQ, whereas ADMS has shown that the 

majority (90%) of emission are dispersed within 700m of farms. As the UK population is concentrated in urban areas a 

substantial distance from farms, further work could explore the health benefit of mitigation on communities in the local 

vicinity of farms (from 1 to 10km). 505 
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Appendix -A 

Table A1 summarises the measures and the uptake rates for each of the three scenarios for the regional modelling. These 

values are additional to uptake of measures already included in emissions from NAEI.  

The uptake scenarios were developed through stakeholder engagement with farmers and stakeholders (i.e. farm advisers, 

academics and farmer representatives). Each scenario includes all 19 mitigation measures, however with varying percentages 510 

of uptake.  

The uptake rates were unique to each mitigation measure in each sector and were reflective of feedback received through 

engagement activities. The engagement activities included an online survey, focus groups and one-to-one interviews with 

participants from the dairy, pig and poultry sectors and those in other sectors which utilise manure or slurry. A total of 161 

people took part in the activities. Full results and methodology are detailed in Jenkins and Wiltshire (2024) 515 

Discussions in these activities were centred around understanding the current level of uptake and the benefits and barriers 

associated with the mitigation measures to determine a potential future uptake. If a mitigation measure was received 

positively, it was estimated to have a higher uptake compared to measures that were received negatively by participants. This 

was determined in the final level of uptake for each scenario. The future uptake did not take account of any potential changes 

to legislation that may have an impact as this information is not known, additionally there were no different uptakes for each 520 

part of the UK due to a lack of data. 

Table A1. A summary of the measures and uptake rates used in each of the three scenarios modelled for this study. 

Sector Measure Uptake (%) 

Low Mediu

m 

High 

Poultry Planting trees near livestock housing 75 80 85 

Poultry Installing air scrubbers to filter pollutants 0 1.5 3 

Poultry Covering a solid manure heap with a sheet 80 85 90 

Poultry Amending diet to better match the nitrogen content to livestock need 97 98 99 

Poultry In-house poultry manure drying 10 12.5 15 

Poultry Increased litter removal (e.g. by belt removal) 50 52.5 55 

Pig Planting trees near livestock housing 42 47.5 53 

Pig Trailing shoe 19 22.5 26 

Pig Trailing hose 10 13 16 

Pig Using slurry bags 2 3 4 

Pig Acidification of slurry in underfloor storage tanks in housing units 1 2 3 

Pig Installing air scrubbers to filter pollutants 0 1.5 3 
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Pig Shallow injection -  open slot 19 21.5 24 

Pig Permeable floating cover (e.g. chopped straw) on slurry store 8 13 13 

Pig Amending diet to better match the nitrogen content to livestock need 97 98 99 

Pig Increasing bedding in housing (e.g. straw) 31 36 37 

Pig Vacuum/flushing system for slurry removal from pits under slatted flooring  12 14 16 

Pig Impermeable floating sheet on slurry store 5 10 18 

Pig Using a fixed solid cover on slurry stores 15 17.5 20 

Pig Improving pen design to keep solid parts of the floor as clean as possible  20 25 27 

Pig Covering a solid manure heap with a sheet 5 7.5 10 

Pig Using automatic or robotic scrapers  30 35 36 

Dairy Covering a solid manure heap with a sheet 5 7.5 10 

Dairy Planting trees near livestock housing 42 47.5 53 

Dairy Using trailing shoe 18 24 30 

Dairy Using trailing hose 35 40 45 

Dairy Acidification of slurry in underfloor storage tanks in housing units 0 1.5 3 

Dairy Shallow Injection 13 15.5 18 

Dairy Using robotic scrapers (e.g. Lely Sphere) 7.5 10 12.5 

Dairy Permeable floating cover (e.g. chopped straw) on slurry store 8 13 18 

Dairy Amending diet to better match the nitrogen content to livestock need 95 97 99 

Dairy Increasing washing in yards/parlours from once to twice a day 10 15 20 

Dairy Increasing scraping in yards/parlours from once to twice a day 40 41 43 

Dairy Increasing bedding in housing units (e.g. straw) 17 18 20 

Dairy Impermeable floating sheet on slurry store 5 10 15 

Dairy Using a fixed solid cover on slurry stores 41 43.5 46 

Dairy Extending the grazing season 74 79.5 85 

Dairy Using automatic  scrapers  25 27.5 30 

 

 

 525 
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Appendix - B 

Table B1 presents the practices that reduce ammonia emissions that were modelled in this study, along with a brief 

description on how it reduces ammonia. 

Table B1. Practices that reduce ammonia emissions, with a short description of how they reduce emissions. 

 Practices that reduce ammonia 

emissions 

How does it reduce ammonia emissions? 

H
o

u
si

n
g
 

Extending the grazing season 
Grazing animals urinate directly on the grass. The urine then infiltrates, 

reducing the exposure to air.  

Increasing bedding material (e.g. straw, 

sand)  

Increasing the amount of bedding helps to absorb more urine, reducing 

exposure to air. 

Increasing washing and scraping in yards 

areas 

Scraping urine, slurry and manure into a covered store reduces the 

exposure to the air and the reaction to produce ammonia. 

Increasing cleaning by using automatic or 

robotic scrapers 

As above, more frequent cleaning reducing the exposure to air. 

Acidification of slurry (usually in housing 

with an under-floor slurry pit) 

Lowering the pH, by adding an acid such as sulphuric acid, decreases 

emission. 

Amending livestock diet to match N 

content to the amount of growth  

Matching feed to the required amount for growth reduces the excretion 

of excess N, some of which will be emitted as ammonia. 

Planting tree shelter belts near livestock 

housing 

Emissions are dispersed and/or taken up by the tree foliage.  

Moving livestock housing away from 

sensitive sites (e.g.  SSSIs) 

A drastic option, but effective because ammonia is deposited near the 

place of emission. This measure moves the sources of ammonia away 

from sites sensitive to ammonia depositions. 

Reducing stocking densities near sensitive 

sites (e.g. SSSIs) 

Moves the sources of ammonia away from sites sensitive to ammonia 

depositions. 

Installing air scrubbers to filter pollutants Fitted to housing units to remove ammonia. 

Increased checking of water structures to 

reduce leaks 

More ammonia is emitted if bedding is wet 

Increasing litter removal (e.g. by belt 

removal) 

For layers, collecting and removing manure to a covered store, reducing 

exposure to air. 

S
to

ra

g
e/

sp

re
ad

i

n
g
 Slurry bags Creates a physical barrier between the manure/slurry and the air. 

 Covering stores with a fixed solid cover 
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Covering stores with an impermeable 

floating sheet  

Using a permeable floating cover 

(chopped straw) 

Covering a manure heap on permeable 

ground 

Trailing hose  
Applies slurry in narrow bands at grass level, reducing the surface area, 

helping quicker infiltration and reducing exposure to air. 

Trailing shoe  
Applies slurry in narrow bands at soil level, reducing the surface area, 

helping quicker infiltration, reducing the exposure to air. 

Shallow injection 

Injecting slurry into the ground, helping quicker infiltration and 

reducing exposure to air. 
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Appendix - C 

Statistics used for the evaluation of the air quality simulation with CMAQ. In the following notations, M and O refer, 

respectively, to the model and the observations data. N is the number of the observation data set. 

Pearson relation coefficient (r): The ideal score of these parameters is 1. It is an unitless variable. 550 

 

Mean bias (MB): The ideal score of this parameter is 0. The unit of this variable is the as the pollutant concentration 

(µg/m3). The MB provides information about the absolute bias of the model, with negative values indicating underestimation 

and positive values indicating overestimation by the model.  

 
MB = 

∑ (𝑀𝑖−𝑂𝑖)𝑁
𝑖=1

𝑁
 

 

 555 

Normalised mean bias (NMB): The ideal score of this parameter is 0 and the unit of the variable is in percent. The NMB 

represents the model bias relative to the reference.  

 
NMB = 

∑ (𝑀𝑖−𝑂𝑖)𝑁
𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 × 100% 
 

 

Root-mean-square error (RMSE): The ideal score of this parameter is 0. The unit of this variable is the as the pollutant 

concentration (µg/m3). The RMSE considers error compensation due to opposite sign differences and encapsulates the 560 

average error produced by the model.  

 
RMSE = √

∑ (𝑀𝑖−𝑂𝑖)2𝑁
𝑖=1

𝑁
 

 

 

Mean Relative Error (MRE): The ideal score of this parameter is 0. The unit of this variable is the as the pollutant 

concentration (µg/m3). The MRE is the mean ratio of difference between the model values and the observations, on the 

observations.  565 

 MRE = 
1

𝑁
∑

𝑀𝑖−𝑂𝑖

𝑂𝑖

𝑁
𝑖=1   

 

Index of Agreement (IOA): The agreement value of 1 indicates a perfect match, and 0 indicates no agreement at all. It is an 

unitless variable. 

 
IOA = 1 - 

∑ (𝑀𝑖−𝑂𝑖)2𝑁
𝑖=1

∑ (|𝑀𝑖− 𝑂̅ |+ |𝑂𝑖− 𝑂̅ |)2 𝑁
𝑖=1

  
 

 

 570 
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Code availability: 

The CMAQ model is freely provided by the US EPA: https://zenodo.org/record/7218076. The WRF model is freely 

available thanks to NCAR on https://github.com/wrf-model/WRF/tree/release-v4.5. The ADMS model is distributed under 575 

license by CERC: https://www.cerc.co.uk/environmental-software/ADMS-model.html. 

 

Data availability: 

Primary data from the regional, local modelling and emission measurements has been used in-combination with secondary 

data in this assessment. All data requests should be submitted to the corresponding author for consideration. Access to 580 

anonymised data may be granted following review. 
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