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Abstract.

Mixed-phase clouds, which are dominant in mid- and high-latitude regions, strongly influence Earth’s radiative balance

and precipitation processes. Their formation depends critically on the presence of ice-nucleating particles (INPs), which are

rare relative to cloud condensation nuclei. The HyICE-2018 measurement campaign took place at the SMEAR II station in

the high-latitude boreal forest of Hyytiälä, Finland, between February and June 2018. Two continuous-flow diffusion cham-5

bers Portable Ice Nucleation Chamber I and II (PINC and PINCii) with high-frequency sampling were deployed to measure

INP concentrations. We applied machine-learning techniques to explore predictors of INP variability using more than 500

high-resolution atmospheric, aerosol, and ecosystem variables measured continuously at Station for Measuring Ecosystem-

Atmosphere Relations (SMEAR) II. We identify distinct differences between winter and spring/summer measurements. The

winter measurements conducted with PINC appear to be nearly independent of any monitored variable. In contrast, the spring/-10

summer measurements conducted with PINCii appear to be more closely linked to and responsive to ambient aerosol properties.

Furthermore, we find that classical parameterizations based on particle concentration overestimate observed INP concentra-

tions in the boreal environment. However, similar empirical fits based on local proxies, such as a marker of biogenic aerosol

or nitrate, yield improved agreement during spring and summer, while no improvement occurs during winter. These results

underscore the need for site-specific parameterizations to capture INP variability in the complex boreal environments.15

1 Introduction

Clouds, especially at high-latitudes, exist in a sensitive balance. Most clouds, including those that bring precipitation to north-

ern latitudes, form between 0◦C and -40◦C and are “mixed-phase”, meaning that both liquid water and ice exist within their

bounds (Mülmenstädt et al., 2015). Obviously, for ice to exist, the temperature must be less than 0◦C, meaning that at these

temperatures liquid water would prefer to be ice. Even with this inherently unstable co-existence of ice and liquid water,20
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mixed-phase clouds are widespread (Mülmenstädt et al., 2015) and persist for many hours and even days, which is important

for Earth’s energy budget and precipitation processes (Shupe et al., 2013). Beyond high-latitudes, mixed-phase clouds play

out-sized roles in regulating climate, especially in the Arctic where underlying feedbacks have amplifying effects (Shupe and

Intrieri, 2004; Morrison et al., 2012). Importantly, mixed-phase clouds only appear with the help of small particles in the atmo-

spheric aerosol that provide the initial seeds for ice and liquid droplet formation. Those seeds, ice nucleating particles (INPs)25

and cloud condensation nuclei (CCN) are fundamental to cloud processes. Of these, the consensus is that INP are significantly

more rare than CCN, and there remains great uncertainty when it comes to predicting INP occurrence and abundance (DeMott

et al., 2010).

In 2018 an intensive measurement campaign (HyICE-2018; Brasseur et al., 2022) was undertaken at the Hyytiälä, Finland,

Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II to focus on measuring INPs in the boreal environment. A30

strong motivation for co-locating the HyICE-2018 INP measurements at the SMEAR II station was due to the fact that SMEAR

II is a heavily instrumented station for monitoring a plethora of meteorological, ecological, hydrological, etc., variables (Hari

and Kulmala, 2005). It is in fact one of the most significantly instrumented such stations globally, as illustrated by its inclusion

in many measurement networks, e.g., ICOS, ACTRIS, SITES, etc. Previously, several results from both the intensive HyICE-

2018 campaign (Paramonov et al., 2020; Schneider et al., 2021; Brasseur et al., 2022, 2024; Vogel et al., 2024), and long-term35

studies bridging the campaign (Schneider et al., 2021) have been published. To complement those studies, herein we attempt

to exploit the wide scope of parameters that are measured at SMEAR II with high time resolution. In addition to classical

correlation studies, commensurate with the already published HyICE studies, we attempt to use several machine learning

algorithms to investigate the emergence of non-obvious (or intiuitive) connections within the available high-frequency data.

The results of our study are educational but cautionary. Strong links between INP data and fundamental chemical signatures40

of the atmospheric aerosol do exist, but are likely open to over-interpretation. Even with several hundred variables measured

with high frequency time resolution, correlation does not necessarily illuminate causation. With regard to INPs, which are a

small fraction of all atmospheric particulate, the indication is that improved mechanistic understanding remains abstruse.

2 Methods and Data

2.1 Study site and period45

The HyICE-2018 campaign took place at the SMEAR II measurement station in Hyytiälä, Finland (Hari and Kulmala, 2005)

located within a sub-Arctic boreal environment at 61◦51’N, 24◦17’E and 181 m above sea level. The station set up and details

during HyICE-2018 are fully described in Brasseur et al. (2022). For the purposes of this study, the time period of interest is

from mid-February 2018 (February 19) to mid-June 2018 (June 10), during which time two continuous flow diffusion chambers

(CFDCs; PINC - Portable Ice Nucleation Chamber, and PINCii - second-generation PINC) sharing design characteristics were50

operated to sample ambient aerosol and measure INPs with high time resolution.

2

https://doi.org/10.5194/ar-2026-4
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



2.2 Complementary Data and Machine Learning

A significant motivation to co-locate the HyICE-2018 campaign at the SMEAR II infrastructure was to take advantage of the

available ecosystem and atmospheric monitoring that is continuously undertaken at the station. Sampling atmospheric particles

is an exercise in capturing rare events, a task that is amplified when measuring INPs. Although ice nucleation activity is highly55

temperature dependent, for much of the heterogeneous freezing temperature spectra (between≈−38◦and 0◦C) INPs represent

a small fraction (as low as one in a million) of all particles (DeMott et al., 2010). That means that there is significant scientific

interest in identifying tracers or other indicators of freezing activity that can be used to follow ice nucleation activity.

In addition to the INP measurements, for the purposes of this investigation, 509 individually monitored variables that are

continuously recorded at SMEAR II were interrogated (data are available online at smear.avaa.csc.fi). Those measurements,60

recorded with high time resolutions, are mostly atmospheric in character and can be broadly categorized as: meteorological,

radiological, soil, characteristics of aerosols and gases, and associated data products of the aforementioned. Naturally, the

resulting multidimensional data includes many potential redundancies and/or irrelevancies, in terms of illuminating connections

to INPs. Therefore, data filtering techniques were implemented to reduce the dimensionality and redundancy within the data.

As a first pass data features were not considered if they contained the following: I. Excessive NaN values, such as are often65

generated when concentrations are below instrument sensitivities. II. Data with little or no variability, i.e., constant values. III.

Data which was duplicated, like the same parameter sampled at different heights but without showing systematic differences.

The study also employs the Wideband Integrated Bioaerosol Sensor (WIBS), a real-time, single-particle instrument designed

for atmospheric bioaerosol detection. The WIBS uses dual ultraviolet excitation wavelengths and subsequent fluorescence

emission measurement to infer the presence of biological material in individual aerosol particles. Light scattering from a 63570

nm diode laser determines particle size (> 0.5µm; Tang et al., 2022).

2.3 INP concentration measurements

The foundation for this study is trying to link measured INPs with other environmental parameters, in an effort to illuminate

the sources and mechanisms that may drive atmospheric ice formation above boreal environments.

Of the operational sampling units from the HyICE-2018 campaign, two CFDCs have time resolutions that make their data75

practical to compare with other parameters sampled at high frequency, and are somewhat straightforwardly intercompared as

demonstrated by Brasseur et al. (2022). PINC and PINCii are parallel-plate CFDCs designed to measure INPs, present in a

sample air flow that is sandwiched between clean sheath air. Ice nucleation conditions within the sample air flow are modeled

for CFDCs based on measured wall temperatures and the known saturation vapor pressure for the ice covered walls (Garimella

et al., 2016, 2017; Castarède et al., 2023).80

PINC, the first-generation instrument, has been widely used in field campaigns for over a decade (Chou et al., 2011; Para-

monov et al., 2020). Originally built for airborne deployments, it features a compact design with a main chamber (568 mm in

length) and a 230 mm evaporation section. It is effective for ambient INP measurements, but has limitations in terms of cooling

power, wall temperature control, and laminar flow stability. Its operation typically involves fixed temperature and humidity
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conditions that target mixed-phase cloud scenarios. During HyICE-2018 PINC was operated from 19 February to 2 April at a85

fixed sample lamina temperature Tl =−31◦C and a relative humidity with respect to water RHw = 105%. PINC utilized a 1 L

min−1 dried (RH≤ 30%) sample flow with an inline cyclone impactor used to eliminate sampling particles larger than 2.5 µm.

PINC measurements from HyICE-2018 are presented in detail in Paramonov et al. (2020).

PINCii was originally designed and built based on upgrading PINC (Castarède et al., 2023), utilizing knowledge gained from

more than a decade of experimental use (Stetzer et al., 2008; Chou et al., 2011; Kanji et al., 2013, 2019), and thus significantly90

enhancing the PINC design and capabilities. PINCii is fully described in Castarède et al. (2023). It has a much larger chamber,

approximately twice the length(s) in both the main (1000 mm) and the evaporation (440 mm) sections, which provides extended

residence time for aerosol particles and ice nucleation and crystal growth. These longer sections, and thus increased growth

time, improve the counting statistics and the instrument resolution. PINCii incorporates a pre-cooled sheath air system, as

well as an enhanced wall temperature control and monitoring, with dense thermocouple arrays and a sophisticated cooling95

system that allows cooling to ≈ -67 °C. PINCii also introduces improved methods for analyzing thermodynamic conditions

by accounting for wall inhomogeneities and ice layer thickness, increasing the accuracy of RH and temperature estimations.

During HyICE-2018, PINCii also utilized a dried sample aerosol flow of 1 L min−1 (measuring from 22 April to 10 June) with

aerosol lamina temperature Tl =−32◦C and RHw = 105% and a 2.5 µm cyclone impactor.

Instrumental constraints and availability made it impossible for PINC and PINCii to operate simultaneously during HyICE-100

2018. However, their operation in succession means that for the bulk of the campaign there exists high-frequency data coverage,

which appears self-consistent. An instrument comparison summary is available within the campaign Measurement Report

(Brasseur et al., 2022), where the inconsistencies with another parallel-plate CFDC chamber, SPectrometer for Ice Nuclei

(SPIN), make plain its absence here.

3 Results and Discussion105

3.1 INP and other monitored variables

The time series of INP concentrations measured by PINC and PINCii with 20 minute sampling windows is presented in

Fig. 1(a). Each point represents a 20 minute sampling window with a subtracted background interpolated from particle free

measurements before and after the sampling periods. Between instruments and across the entire campaign period no significant

differences in the absolute concentrations and spread of measurements are noted. However, by visual inspection the PINCii110

measurements in spring and early summer appear to contain slightly greater variability.

Also depicted in Fig. 1 are the time series of several other key monitored variables. Some, like temperature (Fig. 1 (b))

and snow depth (Fig. 1 (b), gray trace) reflect the seasonal change from winter to spring and summer, while others are quite

commonly associated with INP abundance (e.g., particle number concentrations, Fig. 1 (c)). Given that previously published

results from daily and/or multi-day samples have demonstrated seasonal variability for Hyytiälä INP and linked observed115

trends with biogenic emissions (Schneider et al., 2021; Proske et al., 2025), the time evolution of aerosol mass fractions are
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Figure 1. Time series of atmospheric, aerosol, and INP properties measured during the HyICE-2018 campaign at the SMEAR II station in

Hyytiälä, Finland (19 February–10 June 2018). (a) INP concentrations measured by the Portable Ice Nucleation Chamber (PINC; circles) and

its updated version, PINCii (squares), shown on a logarithmic scale. (b) Air temperature (coral, left axis) and snow depth (grey, right axis),

illustrating the transition from winter through spring to summer. (c) Number concentrations of particles with diameters > 500 nm (grey) and

fluorescent biological aerosol particles (> 500 nm, green). (d) Total particle mass concentration for particles with d < 1µm measured with

an Aerosol Mass Spectrometer (AMS). (e) Mass fractions of AMS-measured chemical components: chloride (purple), ammonia (yellow),

sulfate (red), nitrate (blue), and organics (green). (f) Particle number size distributions (PNSD) measured with a Differential Mobility Particle

Sizer (DMPS), with color indicating dN/dlogDp. Together, the panels capture seasonal changes, aerosol chemical and physical characteristics,

and the variability in INP abundance across the intensive campaign period.
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also plotted (Fig. 1 (e)). The most notable change in that time series is the increasing organic aerosol fraction with the change

in season from winter to summer.

Finally, the time series of sub-micron particles (Fig. 1 (f)), clearly exhibits the characteristic “banana” curves, indicative of

new particle formation, that Hyytiälä is well-known for (Dal Maso et al., 2005; Kulmala et al., 2013).120

3.2 Machine Learning

The relationships suggested by the time series in Fig. 1 motivate a more objective evaluation of how INP variability relates to

the broader set of concurrently measured parameters. Given the large number of variables and their inherent covariance, simple

visual or pairwise analyses are insufficient to robustly rank their relevance. Therefore we apply statistical and machine-assisted

approaches to explore reducing the feature space and to identify consistent associations with INP concentrations.125

The variables presented in Fig. 1 are a small subset of the total 509 recorded variables that were investigated within this

study. Of those 509 sampled variables the previously outlined first-pass dimensional reduction left 84 variables. The remain-

ing 84 parameters were further interrogated using several classic and newer machine-supported analysis techniques. These

included pairwise correlation, decision tree and random forest learning algorithms (Fig. 2), and principle component and K-

means clustering analyses. While it was difficult to extract quantitative results in all cases, each separate treatment resulted in130

qualitatively similar results, as illustrated in Fig. 2.

Variables were excluded from the original set of 509 if they contained excessive numbers of NaN values, exhibited very low

variability (i.e., were nearly constant), or were effectively redundant (for example, the same parameter, such as temperature,

measured at different heights without meaningful differences). Particle size distribution measurements were consolidated into

number concentrations over selected size ranges. In addition, several features were found to be strongly correlated (based on135

Pearson correlation), indicating redundant information; one example is the close correspondence between highly oxygenated

organic molecule (HOM) monomers and organic nitrate.

The feature importance rankings from random forest models (e.g., Fig. 2) consistently assign high importance to variables

that are known to be strongly correlated with ice nucleation activity. For example, biological particles that yield a fluorescence

signal are known to be some of the most abundant INPs in many settings (Murray et al., 2012; Morris et al., 2014; Proske et al.,140

2025). The connection(s) between other highly ranked quantities that emerge and INP are sometimes less clear, but suggest

closer investigation.

In Fig. 3 six variables are selected to illustrate their pairwise correlation with INP. The individual variables were selected

based upon their highly ranked outcomes and physical intuition connecting the variables, measurements, and ice nucleation.

For example, in Fig. 3 fluorescence and nitrate are more closely examined, but acetone and methanol, which largely co-vary145

with nitrate, are not. Ice nucleation has a documented dependence on particle size that emerges in many parameterizations

(DeMott et al., 2015; Tobo et al., 2019), and combined with mass accounts for volume. Several indicators of black carbon

(BC) are surprisingly highly ranked, given many INP studies suggest weak ice activity for BC (Mahrt et al., 2020a; Testa et al.,

2024). Finally, because of Hyytialla’s well documented legacy in organic aerosol measurements and new particle formation

(Kulmala et al., 2013), organics are added as a variable of interest.150
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Figure 2. Feature importance analysis derived from a Random Forest model trained to predict ice-nucleating particle (INP) concentrations

during the HyICE-2018 campaign at SMEAR II. A Random Forest is an ensemble of many simple decision-based models (decision trees)

that each make a prediction using different subsets of the data. By averaging over all trees, the method identifies which input variables

most strongly influence the model’s ability to predict INP variability. The bars show the relative importance of each variable, expressed in

arbitrary units. Higher values indicate that a variable contributed more often to successful decisions within the model. Variables with larger

bars therefore have a stronger statistical association with INP concentrations, although this does not necessarily imply a causal relationship.

For WIBS, ABC denotes particles that fluoresce above the detection threshold in three WIBS fluorescence channels; further details are given

in (Savage et al., 2017).
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In Fig. 3 measured INP is plotted on the vertical axis. In the upper panels variables with previously established linkages to

INP are plotted on the horizontal axes. In addition to flourescent particles, particle number concentrations for particles larger

than 0.5 µm are plotted. Particle concentrations of this size appear in several, widely used, INP parameterization schemes (Tobo

et al., 2013; DeMott et al., 2015). Particle mass concentration, again largely a proxy for the number of large particles present

in the aerosol, is plotted in Fig. 3(b). In the bottom panels several highly-ranked variables that constrain aerosol chemistry155

are plotted. For all of these cases, the organic mass concentration (Fig. 3(d)), nitrate mass concentration (Fig. 3(e)), and black

carbon mass concentration (Fig. 3(f)), the direct correlation is as good or better than what is demonstrated in the upper panels

for variables with previously established links to ice activity.

Figure 3. Log–log scatter plots showing correlations between ice-nucleating particle (INP) concentrations measured by PINC (blue) and

PINCii (red) during HyICE-2018 and six selected aerosol parameters measured at SMEAR II, Hyytiälä, Finland: (a) fluorescent particle

number concentration, (b) particle mass (1 nm–10 µm aerodynamic diameter), (c) number concentration of particles with diameters > 500

nm, (d) organic aerosol mass concentration, (e) nitrate aerosol mass concentration, and (f) black carbon mass concentration. Each point is

the hourly mean, computed for each full hour when both variables were above zero. Pearson correlation coefficients (r) and corresponding

p-values are shown for each instrument. Data are plotted separately for PINC and PINCii to highlight similarities and differences in observed

relationships, and to illustrate potential links between INP abundance and aerosol chemical or physical properties.

While the individual learning algorithms that were tested were consistent and succeeded in bringing to light several variables

that also exhibit strong pairwise correlation with INP, they do in and of themselves not succeed in shedding light on causation160
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or sources of INP. This is perhaps unsurprising, as taken wholistically the highly ranked variables simply suggest that more

dirty, mixed aerosol with higher particulate concentrations is more likely to be ice active. Similar observations have been made

previously in several diverse ecosystems, from the subtropical marine boundary layer (Welti et al., 2018), to ocean basins

(Welti et al., 2020), and globally distributed land-based samples ranging from Arctic to equatorial latitudes (Schrod et al.,

2020). In those studies it has been noted that INP concentrations measured remotely from strong sources, often exhibit log-165

normal frequency distributions (Fig. 4(a)). This observation is directly analogous to random mixing (dilution) of trace pollutant

species, (Ott, 1990) and suggests that the dominant INP signal originates from long-range transport of well-mixed aerosol. In

Fig. 4 the relative frequency distributions of INP concentrations measured with PINC(blue) and PINCii(red) are plotted with

unimodal (a) and bimodal (b) fitted curves. From the fitting it is clear that to a large degree the observed INP concentrations

are well represented by simple log-normal distributions. Moreover, the PINC and PINCii distributions are highly similar. The170

exception, manifest as a spike in the tail of the PINCii distirbution, may be related to a particular source or series of events that

were present during the PINCii sampling, but absent during the deep winter season. However, the divergence is not significant

enough to robustly identify any real signal.

3.3 Parameterization

The qualitative connections that emerge between INP and aerosol characteristics (Fig. 3) from the machine learning algorithms175

(Fig. 2), signal an opportunity to explore the parameterization space. We expect existing parameterizations to account for the

observed correlations related to aerosol particle abundance and biogenic origin (top panels Fig. 3). In contrast, the connections

to aerosol chemical composition (bottom panels Fig. 3) are less obvious and, in fact, despite considerable explorations of black

carbon, it is typically observed to have limited ice activity (Thomson et al., 2018; Adams et al., 2020; Santos et al., 2024),

especially when it occurs as fresh soot. That said, there is some evidence that transport, oxidation, and aging enhance soot’s180

ice activity (DeMott, 1990; Mahrt et al., 2020a, b).

3.3.1 Previous parameterizations

Several empirical parameterizations have been developed to predict INP concentrations as a function of temperature and aerosol

properties. Among the most widely used are the formulations by DeMott et al. (2010) and Tobo et al. (2013), which express

INP number concentration (nINP ) as a function of cloud temperature T in degrees Kelvin and aerosol number concentration185

[scm−3] for particles larger than 0.5 µm (nAP>0.5µm), and were derived specifically from CFDC datasets. DeMott et al.

(2015) revised the 2010 parameterization for predicting INP concentrations to explicitly include mineral dust as a primary

source. However, since mineral dust likely represents a negligible component in our boreal study environment, that is far from

dust sources, we refer back to the 2010 formulation, which is:

nINP = a× (273.16−T )b× (nAP>0.5µm)(c(273.16−T )+d), (1)190

where a = 0.0000594, b = 3.33, c = 0.0264, and d = 0.0033. The subsequent Tobo et al. (2013) parameterization follows a

similar power law formulation but was updated using primary biological aerosol particle measurements. It is also investigated
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Figure 4. Normalized relative frequency distributions for INP concentrations measured by PINC and PINCii during the HyICE-2018 cam-

paign, along with fitted log-normal probability density functions. (a) Unimodal log-normal fits to each instrument’s INP histogram, with

fit parameters evaluated using maximum likelihood estimation and goodness-of-fit assessed via χ2 statistics. (b) Bimodal log-normal fits

decomposed into two component modes, illustrating potential multi-population structure in the INP size/activation spectrum. The analysis

highlights that while unimodal fits capture the central tendency, bi-modal representations better resolve the observed distribution tails for

both instruments.
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because the work of Schneider et al. (2021), Vogel et al. (2024), and Proske et al. (2025), suggest a strong link between INP

and primary biological activity at SMEAR-II. The Tobo et al. (2013) parameterization is,

nINP = (nAP>0.5µm)(α(273.16−T )+β) exp(γ(273.16−T ) + δ), (2)195

where α =−0.074, β = 3.8, γ = 0.414, and δ =−9.671 are suggested as coefficients. Further INP parameterizations have

been developed from SMEAR-II-based immersion freezing measurements (Schneider et al., 2021; Brasseur et al., 2024).

However, the immersion freezing focus differs from the operating principle of CFDCs and is largely in a different, warmer

temperature regime. Moreover, the Schneider et al. (2021) study sought to capture longer-term INP trends. Thus, although the

sampling of those studies was also located at and above SMEAR-II, it is not applied in our analysis of this high-frequency data.200

Figure 5. Predicted INP concentrations from (a) DeMott et al. (2010) and (b) Tobo et al. (2013) parameterizations plotted versus the

INP concentrations measured using the PINC(blue) and PINCii(red) CFDCs. The 1:1 line is plotted and R2 values corresponding to the

coefficient(s) of determination for each fit are given within the legend. Negative R2 values indicate that the parameterizations provide no

more predictive strength than the arithmetic mean value.
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In Fig. 5 the INP predicted from these models is compared to the PINC (blue) and PINCii (red) measurements and the

coefficient of determination (R2) is used to quantify how well the models explain the observed variability. In all cases the R2

has nonintuitive negative values, which can occur when fitting non-linear functions and indicates that the model predictions are

less accurate than simply applying the observational mean as a predictor (i.e., a horizontal line at the mean value). Thus, both205

model formulations perform poorly when applied to the HyICE-2018, PINC and PINCii data, indicating that these existing pa-

rameterizations do not capture the observed boreal-specific INP variability (Fig. 5). This observation both agrees and disagrees

with shorter-term observations made in the context of a focused intercomparison between instruments during the HyICE-2018

campaign, for which the Tobo et al. (2013) parameterization performed well, even as the DeMott et al. (2010) formulation

consistently underpredicted measurements.210

3.3.2 New parameterizations for boreal conditions

Although previously described parameterizations do not adequately capture the observed variability, they suggest the explo-

ration of simple empirical power-law fitting between nINP and aerosol and chemical tracers that have been highly ranked by

the machine learning algorithms. We seek to determine whether such an approach can elucidate potential local INP proxies.

We utilize a highly simplified, generic power law relationship,215

nINP = i×Xj , (3)

where X is used to represent variables such as those in Fig. 3 and i and j are fitting parameters. The coefficients that result

from fitting (3) and adjusted R2 values are summarized in Table 1.

The best-performing relationships are obtained for the PINCii dataset, with nitrate mass and WIBS fluorescence both yield-

ing moderate predictive skill (Fig. 6). This suggests that INP abundance in the boreal boundary layer is more closely linked220

to chemically complex and biologically active aerosols than to bulk particle number alone. However, the PINC measurements,

collected during the snow-covered (Fig. 1) winter season, have almost no response to the predictors. While the total variability

of the PINC data largely spans the PINCii data, the muted response to all predictors, mimics the Fig. 5 results, and no model

seems to improve prediction beyond the mean PINC value.

4 Conclusions225

Here we have attempted to deepen our understanding of the sources, abundance, and variability of INP in the boreal environ-

ment. A major objective of the HyICE-2018 campaign was to utilize high-frequency INP measurements, co-located with the

over 500 time-resolved monitoring measurements at SMEAR-II, to illuminate INP characteristics in more detail. The results

are mixed. Using CFDCs, we capture higher frequency INP variability, with as short as 20 minute time increments. However,

the observed INP concentrations can only be qualitatively linked to other measured variables, and no single parameter emerges230

that is strongly linked to INP.
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Table 1. Regression coefficients and adjusted R2 values calculated for different predictors based on the simplified power law relationship

(Fig. 3). The presented predictors were selected based on their consistently high qualitative scoring using the various machine learning

techniques (§3.2).

Predictor (X) Instrument i j Adjusted R2

Fluorescent particle PINC 36.22 −0.05 −0.02

Fluorescent particle PINCii 140.51 0.79 0.50

Particle mass PINC 30.24 −0.10 −0.01

Particle mass PINCii 18.50 0.86 0.43

> 500 nm number concentration PINC 35.75 −0.21 0.01

> 500 nm number concentration PINCii 20.88 1.13 0.39

Organic aerosol mass PINC 34.86 0.00 −0.01

Organic aerosol mass PINCii 27.66 0.56 0.37

Nitrate aerosol mass PINC 36.22 −0.05 −0.02

Nitrate aerosol mass PINCii 140.51 0.79 0.50

Black carbon mass PINC 39.92 0.03 −0.02

Black carbon mass PINCii 274.50 1.03 0.57

One qualitatively strong connection, is that aerosol bulk chemical composition parameters (e.g., nitrate, acetone) are consis-

tently highly ranked predictor variables. The origin of the connection is unclear, and it may simply be a connection between

total aerosol burden and INP abundance. Other, previously established connections, for example, with large particles and with

biogenic particles, also exhibit highly ranked importance. However, even these features do not have the strength to suggest235

cause and effect.

There are distinct differences between measurements in the winter and spring/summer seasons. The winter measurements

made with PINC appear to be nearly independent of any monitored variable, and rather appear to simply capture the intrinsic

natural variability of INP. This potentially suggests that in southern Finland, winter INP largely originate from long range

transport, and are reflective of the mixing and dilution of INP from many sources. The spring/summer measurements conducted240

with PINCii appear to be more linked to, and respond to, the ambient aerosol properties. This is consistent with previous work

with longer-term averages (Schneider et al., 2021) that showed that in 2018 at SMEAR-II the INP concentrations increased as

spring arrived and the ecosystem awoke. That said more work and longer-term high frequency measurements would be needed

to close the loop and to examine whether there is consistency between seasonal trends and high resolution measurements.

Given the rarefied nature and high spatial and temporal variability of INP, one underlying conclusion of this study is that,245

even with vast amounts of complementary data, drawing strong conclusions that can illuminate causality will likely remain

illusive. We proffer that more and longer-term studies should be undertaken at heavily-equipped complementary measurement

stations. Perhaps, for example, the ACTRIS cloud in-situ (CCice) effort and instrument co-location can help the community to
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Figure 6. Comparison between measured and parameterized ice-nucleating particle (INP) concentrations for six empirical fits using (a)

fluorescent particle number concentration, (b) particle mass (1 nm–10 µm), (c) number concentration of particles with diameters > 500 nm,

(d) organic aerosol mass, (e) nitrate aerosol mass, and (f) black carbon mass. Each panel shows PINC (blue) and PINCii (red) data from the

HyICE-2018 campaign. The 1:1 dashed lines indicate agreement between the measured INP and the simplified power law parameterizations

for both data sets. The adjusted coefficients of determination (adjusted R2) are given in Table 1. Moderate skill was obtained for the WIBS-

and NO3-based parameterizations (adjusted R2 ≈ 0.5 for PINCii), suggesting that biologically and chemically enriched aerosol components

contribute to INP variability in the boreal atmosphere.

identify key predictor parameters. Such an effort could significantly enhance future mobile measurements, where investigators

typically have limited scope and resources to choose the “important” complementary measurements.250

Data availability. The aerosol, trace gas and meteorological data are available at the SmartSMEAR data repository (https://avaa.tdata.fi/web/smart).

Contact with the original data contributors can be requested from atmdata@helsinki.fi. The INP data presented in this study are available at

https://doi.org/10.5281/zenodo.5141574 (Brasseur et al., 2021). Other data are available upon request from the corresponding authors. The

data discussed and presented from PINC are also included in (Paramonov et al., 2020) and are available at https://doi.org/10.3929/ethz-b-

000397022.255
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