
Supplementary Information 

S1. Overview of measurements 

Table S1. Overview of the measurements used in this study. 

Parameter Instrument Campaigns  

Particle number size 
distribution 

Scanning Electrical Mobility 
Spectrometer 10-1000 nm (SEMS, 
Brechtel, USA) 

March 2021, December 2021, 
Feb-Mar 2022, March 2023  

 Scanning Mobility Particle Sizer 14-
685 nm (SMPS, TSI, USA) 

October 2016, October 2019 

 Aerodynamic Particle Sizer 700-
5000 nm (APS, TSI, USA) 

October 2016, October 2019, 
December 2021, Feb-Mar 
2022, March 2023 

Particle number 
concentration 

Condensation Particle Counter 
(CPC, 3782 TSI, USA) 

March 2021 

 Condensation Particle Counter 
(CPC, 3010 TSI, USA) 

October 2016, October 2019 

 Condensation Particle Counter 
(CPC, A20 Airmodus, Finland)  

March 2023 

 Mixing Condensation Particle 
Counter (mCPC, Brechtel, USA) 

December 2021, Feb-Mar 
2022 

Cloud condensation 
nuclei concentration 

Cloud Condensation Nuclei 
counter (CCN-100/200, Droplet 
Measurement Technologies, USA) 

October 2016, October 2019, 
March 2021, December 2021, 
Feb-Mar 2022, March 2023 

Black carbon 
concentration 

Aethalometer (AE33, Aerosol 
Magee Scientific, Slovenia) 
 

October 2016, October 2019, 
March 2023 

 Tricolour Absorption Photometer 
(TAP, Brechtel, USA) 

March 2021, December 2021, 
Feb-Mar 2022 

CO2 concentration CO2 analyser (CA-10, Sable, USA) 
 

October 2016, March 2023 

NOx concentration NOx analyser (9841A, Ecotech, 
Australia) 

March 2023 

CO concentration CO analyser (9830B, Ecotech, 
Australia) 

October 2016, March 2023 

O3 concentration O3 analyser (9810B, Ecotech, 
Australia) 

October 2016, October 2019, 
March 2023 

Meteorological 
parameters 

Weather station (Lufft WS800-
UMB, Germany) 

March 2021 

 Weather station (Gill MaxiMet 
GMX501, Gill Instruments Ltd., UK) 

December 2021, Feb-Mar 
2022, March 2023 

 RV Investigator’s built-in suite of 
weather sensors 

October 2016, October 2019 

 



 

Figure S1: Spatial distribution of measurements used in this study, grouped by their respective 
campaigns. 

 

 

 

 

 



S2. Density distributions and correlation analysis 

 

Figure S2: Kernel density estimates for in-situ meteorological variables collected at the GBR during spring (blue) and summer (orange). The variables 
shown are, pressure (a), air temperature (b), relative humidity (c), solar irradiance (d), wind direction (e), black carbon mass concentration (f), wind 
speed (g), land influence as fraction of land influenced back trajectory (h) and low cloud cover fraction (i). Land fraction is calculated from 72-hour 
back trajectories using the HYPSLIT model. Low cloud cover fraction is from ERA5 reanalysis data product. 



 

Figure S3: Correlation heatmap for main variables analysed in this study. Logarithmic values were 
used to calculate Pearson correlation coefficients for variables marked with *. Wind direction is 
presented by cosine and sine values of the wind direction as linear variables instead of its 
nominal polar coordinate representation.  

 

 

 

 

 

 

 

 

 

 

 

 

 



S3. Spatiotemporal distibutions 

 

Figure S4: Spatial distribution of measurement month (a, b), Ntot (c, d) and CCN concentration (e, 
f) over GBR. Subplots (a,c,e) shows spatial distribution for entire GBR, while subplots (b,d,f) focus 
on central part of GBR where most of campaigns overlap. The median of data with resolution of 
0.01 latitude and longitude was calculated for clearer visualization of stationary and overlapping 
data. 



 

Figure S5: Temporal variability of cloud condensation nuclei (CCN) concentration (a), activation 
ratio (b), and total particle number concentration (c) excluding data from northern part of the 
GBR. The middle line of a boxplot represents the median value, the upper and lower edges of a 
box show the interquartile range, and the whiskers show the entire range. 

 



S4. CCN concentration drivers analysis 

 

Figure S6: Activation ratio, land fraction, and fraction of data with no Hoppel minimum present as 
well as total number concentration of particles for different CCN concentration bins. CCN 
concentration bins were created based on CCN concentration quantiles, ensuring equal 
distribution of data points between analysed bins. Values of activation ratio, land fraction, and 
total number concentration of particles are visualized by boxplots in which the middle line 
represents the median value, the upper and lower edges of a box show 75 % and 25% percentiles, 
and the whiskers show the entire range.  

 

 

 



Table S2. Quantiles of CCN concentration and tertile ranges of activation ratio and the number of 
data points used for cloud processing analysis. 

  
Activation Ratio  

Number of data points Low  
(0.03 – 0.53) 

Medium  
(0.53 – 0.69) 

High  
(0.69 – 0.99) 

CCN 
concentration 

Q1 (51 - 240 #/cm3) 530 268 112 
Q2 (240 - 450 #/cm3) 317 344 219 
Q3 (450 - 810 #/cm3) 166 274 378 
Q4 (810-2650 #/cm3) 117 243 455 

 

Fig S7: Permutation feature importance of climate variables in explaining CCN concentration 
using every variable in our dataset for spring (left) and summer (right). The differences between 
original and permuted mean square errors on the x-axis indicate how important each feature is in 
predicting the CCN concentration, with larger difference between original and permuted values 
indicating a more important feature. The black whiskers indicate 95% confidence intervals. The 
number of permutations used was 10000. 

S5. SHAP estimates and partial dependency plots 

The directionality of the significant (95% confidence intervals > 0) features in the gradient 
boosting regression algorithm model explaining CCN concentration over GBR (Fig. 4) is visualized 
by SHAP estimates (Fig. S8a) and partial dependency plots (Fig. S8 b-f). The SHAP estimate plot 
shows the impact on model output (SHAP value) by each of features and the datapoints are 
coloured by relative value for each feature. Color scaling is applied independently to each 
feature, giving a relative scale. For example, looking at the accumulation mode particles (Fig. 
S8a), we can see the highest (red) values are over 1000 in SHAP value, which means that high 
values of accumulation mode particles contribute strongly and positively to estimated CCN 
concentration. At the same time, critical diameter has the highest values (red) for negative SHAP 
values, which means that high values of critical diameter decrease predicted CCN concentration 
values. Furthermore, the absolute value of SHAP values for critical diameter is on average lower 
than for accumulation mode particle concentration which means that the impact of critical 
diameter on model output is smaller than accumulation mode particle concentration. Relations 



between feature values and model output can be further investigated by partial dependency plots 
that show the relation between measured values of features and their impact on model outcome. 
Partial dependency plots show values of both the feature and its corresponding effected on the 
predicted value. Hence, partial dependency plots (Fig. S8 b,d) confirm previous observations 
about accumulation mode particle concentration and critical diameter effects on modelled CCN 
concentration. 

 

Figure S8: SHAP estimates (a) and partial dependency plots (b – h) for the seven statistically 
significant model inputs and how they drive CCN concentrations. a) Positive values represent a 
positive contribution to model prediction value and negative values a negative contribution. 
SHAP features are coloured by the relative values of each feature. b – h) Predicted contribution 
to model prediction as a function of feature values. 

 

 

 

 

 

 

 

 

 

 

 



S6. Counterfactual modelling 

 

Fig S9: Counterfactual modelling results for CCN predicting gradient boosting regression model. 
On the left, histograms of the baseline model (blue) and the counterfactual model (orange). In 
the middle, histograms of the difference between the baseline and the counterfactual model 
CCN predictions. On the right, numerical statistics for the counterfactual model, mean and 
median differences between the baseline and counterfactual models including confidence 
intervals, number of data points in the test set for each season and the amount of continuous 
batches used for block bootstrapping. The number of permutations used was 10,000.   


