Articles | Volume 3, issue 2
https://doi.org/10.5194/ar-3-521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-3-521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Condensation diffusion charging – particle number measurement of high concentrations down to 3 nm
Helmut Krasa
Institute of Electrical Measurement and Sensor Systems, Graz University of Technology, Graz, Austria
Victoria M. Fruhmann
Institute of Electrical Measurement and Sensor Systems, Graz University of Technology, Graz, Austria
Sebastian Schurl
Institute of Thermodynamics and Sustainable Propulsion Systems, Graz University of Technology, Graz, Austria
Martin Kupper
Institute of Electrical Measurement and Sensor Systems, Graz University of Technology, Graz, Austria
Alexander Bergmann
CORRESPONDING AUTHOR
Institute of Electrical Measurement and Sensor Systems, Graz University of Technology, Graz, Austria
Related authors
No articles found.
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024, https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Short summary
Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. In particular, a small share (< 20 %) of poorly maintained or tampered vehicles are responsible for the majority (60 %–90 %) of traffic-related emissions. The emissions from vehicles are currently not properly monitored during their lifetime. We present a roadside measurement technique, called
point sampling, which can be used to monitor vehicle emissions throughout their life cycle.
Alexander Schossmann, Michael Töfferl, Christoph Schmidt, and Alexander Bergmann
J. Sens. Sens. Syst., 13, 31–39, https://doi.org/10.5194/jsss-13-31-2024, https://doi.org/10.5194/jsss-13-31-2024, 2024
Short summary
Short summary
We present a concept for angle and position measurement based on metamaterials. The distance between the sensor and the rotating or moving metamaterial target is not limited to a precise value. We use state-of-the-art millimeter wave radar chip technology for read-out, initially intended for applications such as gesture recognition or contactless switches. We implement a demonstrator test setup and show the proof of principle.
Benjamin Lang, Wolfgang Breitfuss, Simon Schweighart, Philipp Breitegger, Hugo Pervier, Andreas Tramposch, Andreas Klug, Wolfgang Hassler, and Alexander Bergmann
Atmos. Meas. Tech., 14, 2477–2500, https://doi.org/10.5194/amt-14-2477-2021, https://doi.org/10.5194/amt-14-2477-2021, 2021
Short summary
Short summary
This work describes the design, calibration, and application of a hygrometer and sampling system, which have been developed and used for water content measurement in experimentally simulated atmospheric icing conditions with relevance in fundamental icing research as well as aviation testing and certification. Together with a general description of water content measurement and accompanying uncertainties, the results of a comparison to reference instruments in an icing wind tunnel are presented.
Cited articles
Ahonen, L. R., Kangasluoma, J., Lammi, J., Lehtipalo, K., Hämeri, K., Petäjä, T., and Kulmala, M.: First measurements of the number size distribution of 1–2 nm aerosol particles released from manufacturing processes in a cleanroom environment, Aerosol Science and Technology, 51, 685–693, https://doi.org/10.1080/02786826.2017.1292347, 2017. a
Asbach, C., Todea, A. M., and Kaminski, H.: Evaluation of a Partector Pro for atmospheric particle number size distribution and number concentration measurements at an urban background site, Aerosol Research, 2, 1–12, https://doi.org/10.5194/ar-2-1-2024, 2024. a
Balendra, S., Kale, A., Pongetti, J., Kazemimanesh, M., Haugen, M., Weller, L., and Boies, A.: Condensation particle counters: Exploring the limits of miniaturisation, Journal of Aerosol Science, 175, 106266, https://doi.org/10.1016/J.JAEROSCI.2023.106266, 2024. a
Biskos, G., Reavell, K., and Collings, N.: Unipolar diffusion charging of aerosol particles in the transition regime, Journal of Aerosol Science, 36, 247–265, https://doi.org/10.1016/J.JAEROSCI.2004.09.002, 2005. a
Brook, R. D., Rajagopalan, S., Pope, C. A., Brock, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., and Kaufman, J. D.: Particulate Matter Air Pollution and Cardiovascular Disease, Circulation, 121, 2331–2378, https://doi.org/10.1161/CIR.0B013E3181DBECE1, 2010. a
Burtscher, H., Lutz, T., and Mayer, A.: A New Periodic Technical Inspection for Particle Emissions of Vehicles, Emission Control Science and Technology, 5, 279–287, https://doi.org/10.1007/S40825-019-00128-Z, 2019. a
Choi, Y. and Kim, S.: An Improved Method for Charging Submicron and Nano Particles with Uniform Charging Performance, Aerosol Science and Technology, 41, 259–265, https://doi.org/10.1080/02786820601148262, 2007. a
Fierz, M., Houle, C., Steigmeier, P., and Burtscher, H.: Design, calibration, and field performance of a miniature diffusion size classifier, Aerosol Science and Technology, 45, 1–10, https://doi.org/10.1080/02786826.2010.516283, 2011. a
Fierz, M., Meier, D., Steigmeier, P., and Burtscher, H.: Aerosol measurement by induced currents, Aerosol Science and Technology, 48, 350–357, https://doi.org/10.1080/02786826.2013.875981, 2014. a
Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., and Herbarth, O.: The effect of particle size on cardiovascular disorders – The smaller the worse, Science of The Total Environment, 409, 4217–4221, https://doi.org/10.1016/J.SCITOTENV.2011.05.049, 2011. a
Giechaskiel, B., Wang, X., Gilliland, D., and Drossinos, Y.: The effect of particle chemical composition on the activation probability in n-butanol condensation particle counters, Journal of Aerosol Science, 42, 20–37, https://doi.org/10.1016/J.JAEROSCI.2010.10.006, 2011. a
Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Bergmann, A., and Schindler, W.: Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number, Journal of Aerosol Science, 67, 48–86, https://doi.org/10.1016/j.jaerosci.2013.09.003, 2014. a
Giechaskiel, B., Melas, A., and Mamakos, A.: Assessment of two condensation particle counters (CPCs) in photometric mode for high concentration exhaust emission measurements, Combustion Engines, 193, 15–23, https://doi.org/10.19206/CE-161190, 2023. a
Hammer, T., Roos, D., Giechaskiel, B., Melas, A., and Vasilatou, K.: Influence of soot aerosol properties on the counting efficiency of instruments used for the periodic technical inspection of diesel vehicles, Aerosol Research, 2, 261–270, https://doi.org/10.5194/ar-2-261-2024, 2024. a
Hao, W., Stolzenburg, M. R., Attoui, M., Zhang, J., and Wang, Y.: Optimizing the activation efficiency of sub-3 nm particles in a laminar flow condensation particle counter: Model simulation, Journal of Aerosol Science, 158, 105841, https://doi.org/10.1016/J.JAEROSCI.2021.105841, 2021. a, b, c
Health Effects Institute: State of Global Air 2024. Special Report, https://www.stateofglobalair.org/sites/default/files/documents/2024-06/soga-2024-report_0.pdf (last access: 14 November 2025), 2024. a
Iida, K., Stolzenburg, M. R., and McMurry, P. H.: Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter, Aerosol Science and Technology, 43, 81–96, https://doi.org/10.1080/02786820802488194, 2009. a, b, c, d
International Organization for Standardization (ISO): Aerosol particle number concentration – Calibration of condensation particle counters, 2015, International Standard ISO 27891:2015(E), ISBN 978 0 580 80574 5, 2015. a
Jung, H. and Kittelson, D. B.: Characterization of aerosol surface instruments in transition regime, Aerosol Science and Technology, 39, 902–911, https://doi.org/10.1080/02786820500295701, 2005. a
Keskinen, J., Pietarinen, K., and Lehtimäki, M.: Electrical low pressure impactor, Journal of Aerosol Science, 23, 353–360, https://doi.org/10.1016/0021-8502(92)90004-F, 1992. a
Kim, D. S., Suk Lee, D., Gyu Woo, C., and Choi, M.: Control of nanoparticle charge via condensation magnification, Journal of Aerosol Science, 37, 1876–1882, https://doi.org/10.1016/J.JAEROSCI.2006.08.003, 2006. a
Knoll, M., Schriefl, M. A., Nishida, R. T., and Bergmann, A.: Impact of pre-charged particles on steady state and pulsed modes of unipolar diffusion chargers, Aerosol Science and Technology, 55, 512–525, https://doi.org/10.1080/02786826.2021.1873910, 2021. a
Krasa, H.: Condensation Diffusion Charging – Particle Number Measurement of High Concentrations Down to 2.5 nm, Graz University of Technology [data set], https://doi.org/10.3217/tmhk6-rrd07, 2025. a
Krasa, H., Bainschab, M., Kupper, M., and Bergmann, A.: 10 nm Exhaust Particle Counting System for Automotive Certification Measurements, in: 39th Annual Meeting of the American Association for Aerosol Research, https://aaarabstracts.com/2021/AbstractBook.pdf (last access: 14 November 2025), 2021. a
Kuang, C., Chen, M., McMurry, P. H., and Wang, J.: Modification of Laminar Flow Ultrafine Condensation Particle Counters for the Enhanced Detection of 1 nm Condensation Nuclei, 46, 309–315, https://doi.org/10.1080/02786826.2011.626815, 2011. a, b
Lewis, G. and Hering, S.: Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters, Aerosol Science and Technology, 47, 645–654, https://doi.org/10.1080/02786826.2013.779629, 2013. a, b, c
Li, Y., Chen, X., Wu, J., Zhang, Q., Zhang, Z., Hao, J., and Jiang, J.: A convertible condensation particle counter using alcohol or water as the working fluid, Aerosol Science and Technology, https://doi.org/10.1080/02786826.2024.2395939, 2024. a
Melas, A., Vasilatou, K., Suarez-Bertoa, R., and Giechaskiel, B.: Laboratory measurements with solid particle number instruments designed for periodic technical inspection (PTI) of vehicles, Measurement, 215, 112839, https://doi.org/10.1016/J.MEASUREMENT.2023.112839, 2023. a
naneos particle solutions GmbH: Partector 2 Aerosol Dosimeter Operation Manual, http://www.naneos.ch (last access: 14 November 2025), 2024. a
Park, D., An, M., and Hwang, J.: Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution, Journal of Aerosol Science, 38, 420–430, https://doi.org/10.1016/J.JAEROSCI.2007.01.003, 2007. a
Penttinen, P., Timonen, K. L., Tiittanen, P., Mirme, A., Ruuskanen, J., and Pekkanen, J.: Ultrafine particles in urban air and respiratory health among adult asthmatics, European Respiratory Journal, 17, 428–435, https://doi.org/10.1183/09031936.01.17304280, 2001. a
Qi, C., Chen, D.-R., and Pui, D. Y. H.: Experimental study of a new corona-based unipolar aerosol charger, Aerosol Science, 38, 775–792, https://doi.org/10.1016/j.jaerosci.2007.05.005, 2007. a
Reavell, K., Hands, T., and Collings, N.: A fast response particulate spectrometer for combustion aerosols, in: SAE Technical Papers, https://doi.org/10.4271/2002-01-2714, 2002. a
Reinisch, T., Radl, S., Bergmann, A., Schriefl, M., and Kraft, M.: Effect of model details on the predicted saturation profiles in condensation particle counters, Advanced Powder Technology, 30, 1625–1633, https://doi.org/10.1016/j.apt.2019.05.011, 2019. a
Schaffer, P.: Influence of gas composition on the corona discharge process : Modeling and experimental verification, Master thesis, Graz University of Technology, https://doi.org/10.3217/55y4h-hsw18, 2021. a, b
Scheibel, H. G. and Porstendörfer, J.: Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, Journal of Aerosol Science, 14, 113–126, https://doi.org/10.1016/0021-8502(83)90035-6, 1983. a, b
Schraufnagel, D. E.: The health effects of ultrafine particles, Experimental & Molecular Medicine, 52, 311–317, https://doi.org/10.1038/s12276-020-0403-3, 2020. a
Schriefl, M. A., Bergmann, A., and Fierz, M.: Design principles for sensing particle number concentration and mean particle size with unipolar diffusion charging, IEEE Sensors Journal, 19, 1392–1399, https://doi.org/10.1109/JSEN.2018.2880278, 2019. a
Schriefl, M. A., Nishida, R. T., Knoll, M., Boies, A., and Bergmann, A.: Characterization of particle number counters based on pulsed-mode diffusion charging, Aerosol Science and Technology, 54, 772–789, https://doi.org/10.1080/02786826.2020.1724257, 2020. a
Schurl, S., Kupper, M., Krasa, H., Heidinger, A., and Schmidt, S.: A PN-Measurement System for Small Engine Applications, in: Small Powertrains and Energy Systems Technology Conference, ISBN 2023011809, 2023. a
Stolzenburg, M. R. and McMurry, P. H.: An Ultrafine Aerosol Condensation Nucleus Counter, Aerosol Science and Technology, 14, 48–65, https://doi.org/10.1080/02786829108959470, 1991. a
Stratmann, F., Herrmann, E., Petäjä, T., and Kulmala, M.: Modelling Ag-particle activation and growth in a TSI WCPC model 3785, Atmos. Meas. Tech., 3, 273–281, https://doi.org/10.5194/amt-3-273-2010, 2010. a, b
Suh, J., Han, B., Seong Kim, D., and Choi, M.: A method for enhanced charging of nanoparticles via condensation magnification, Journal of Aerosol Science, 36, 1183–1193, https://doi.org/10.1016/J.JAEROSCI.2005.02.001, 2005. a, b
Takegawa, N., Iida, K., and Sakurai, H.: Modification and laboratory evaluation of a TSI ultrafine condensation particle counter (Model 3776) for airborne measurements, Aerosol Science and Technology, 51, 235–245, https://doi.org/10.1080/02786826.2016.1261990, 2017. a
Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T., and Kulmala, M.: Particle size magnifier for nano-CN detection, Aerosol Science and Technology, 45, 533–542, https://doi.org/10.1080/02786826.2010.547889, 2011. a
Vasilatou, K., Iida, K., Kazemimanesh, M., Olfert, J., Sakurai, H., Sipkens, T. A., and Smallwood, G. J.: Aerosol physical characterization: A review on the current state of aerosol documentary standards and calibration strategies, Journal of Aerosol Science, 183, 106483, https://doi.org/10.1016/J.JAEROSCI.2024.106483, 2025. a
Wimmer, D., Lehtipalo, K., Franchin, A., Kangasluoma, J., Kreissl, F., Kürten, A., Kupc, A., Metzger, A., Mikkilä, J., Petäjä, T., Riccobono, F., Vanhanen, J., Kulmala, M., and Curtius, J.: Performance of diethylene glycol-based particle counters in the sub-3 nm size range, Atmos. Meas. Tech., 6, 1793–1804, https://doi.org/10.5194/amt-6-1793-2013, 2013. a
Yaw, C. L.: Yaws' handbook of thermodynamic and physical properties of chemical compounds : physical, thermodynamic and transport properties for 5000 organic chemical compounds, 1st edn., Knovel, ISBN 978-1-59124-444-8, 2003. a
Short summary
This study presents a new method to measure ultrafine airborne particle concentrations down to 3 nm at high concentrations. By growing the particles into droplets, subsequently electrically charging them, and detecting the electrical signal, the system enables accurate and compact measurements of the particle number concentration. This approach is useful for onboard monitoring of vehicle emissions where space is limited and high concentrations are measured.
This study presents a new method to measure ultrafine airborne particle concentrations down to 3...
Altmetrics
Final-revised paper
Preprint