Articles | Volume 2, issue 2
https://doi.org/10.5194/ar-2-207-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-2-207-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: Eliminating aircraft soot emissions
Una Trivanovic
Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich, Switzerland
Sotiris E. Pratsinis
CORRESPONDING AUTHOR
Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich, Switzerland
Related subject area
Aerosol Technology (AT)
A comprehensive design schedule for electrosprayed thin films with different surface morphologies
Determining the ultraviolet radiation dose experienced by aerosols using ultraviolet-sensitive dyes
Susan W. Karuga, Erik M. Kelder, Michael J. Gatari, and Jan C. M. Marijnissen
Aerosol Research, 2, 245–259, https://doi.org/10.5194/ar-2-245-2024, https://doi.org/10.5194/ar-2-245-2024, 2024
Short summary
Short summary
Surface morphology is critical for enhanced performance in thin films. However, there is limited understanding regarding the accurate control of thin-film morphology. This work provides a systematic way of optimizing different parameters to achieve the desired surface morphologies. Key parameters for controlling thin-film morphology have been identified. Using these parameters, a systematic design schedule for electrosprayed thin films with different surface morphologies has been developed.
Qingqing Fu and Frank Einar Kruis
Aerosol Research, 2, 77–92, https://doi.org/10.5194/ar-2-77-2024, https://doi.org/10.5194/ar-2-77-2024, 2024
Short summary
Short summary
This work demonstrates the feasibility of estimating the ultraviolet (UV) dose experienced by aerosols without using virus-containing droplets. We developed a model system using non-evaporating droplets containing UV-sensitive dyes. These dye-containing droplets were generated and then exposed to UV-C light in a custom-built irradiation chamber. The proposed method could aid in understanding the effect of the suspending medium and droplet size on the UV dose required for bioaerosol inactivation.
Cited articles
Abegglen, M., Durdina, L., Brem, B. T., Wang, J., and Rindlisbacher, T.: Effective density and mass – mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size, J. Aerosol Sci., 88, 135–147, https://doi.org/10.1016/j.jaerosci.2015.06.003, 2015.
Agarwal, A., Speth, R. L., Fritz, T. M., Jacob, S. D., Rindlisbacher, T., Iovinelli, R., Owen, B., Miake-Lye, R. C., Sabnis, J. S., and Barrett, S. R. H.: SCOPE11 Method for Estimating Aircraft Black Carbon Mass and Particle Number Emissions, Environ. Sci. Technol., 53, 1364–1373, https://doi.org/10.1021/acs.est.8b04060, 2019.
Agnolucci, P., Akgul, O., McDowall, W., and Papageorgiou, L. G.: The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: An exploration with SHIPMod (Spatial hydrogen infrastructure planning model), Int. J. Hydrogen. Energy, 38, 11189–11201, https://doi.org/10.1016/j.ijhydene.2013.06.071, 2013.
Air France KLM Sustainable Aviation Fuel: Sustainable Aviation Fuel, https://www.afklcargo.com/CH/en/common/products_and_solutions/sustainableaviationfuel.jsp#, last access: 12 December 2023.
Baldelli, A., Trivanovic, U., Sipkens, T. A., and Rogak, S. N.: On determining soot maturity: A review of the role of microscopy- and spectroscopy-based techniques, Chemosphere, 252, 126532, https://doi.org/10.1016/j.chemosphere.2020.126532, 2020.
Bendtsen, K. M., Brostrøm, A., Koivisto, A. J., Koponen, I., Berthing, T., Bertram, N., Kling, K. I., Dal Maso, M., Kangasniemi, O., Poikkimäki, M., Loeschner, K., Clausen, P. A., Wolff, H., Jensen, K. A., Saber, A. T., and Vogel, U.: Airport emission particles: Exposure characterization and toxicity following intratracheal instillation in mice, Part. Fibre Toxicol., 16, 1–23, https://doi.org/10.1186/s12989-019-0305-5, 2019.
Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., and Anderson, B. E.: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels, Atmos. Chem. Phys., 14, 11–23, https://doi.org/10.5194/acp-14-11-2014, 2014.
Bock, L. and Burkhardt, U.: The temporal evolution of a long-lived contrail cirrus cluster: Simulations with a global climate model, J. Geophys. Res., 121, 3548–3565, https://doi.org/10.1002/2015JD024475, 2016.
Boies, A. M., Stettler, M. E. J., Swanson, J. J., Johnson, T. J., Olfert, J. S., Johnson, M., Eggersdorfer, M. L., Rindlisbacher, T., Wang, J., Thomson, K., Smallwood, G., Sevcenco, Y., Walters, D., Williams, P. I., Corbin, J., Mensah, A. A., Symonds, J., Dastanpour, R., and Rogak, S. N.: Particle emission characteristics of a gas turbine with a double annular combustor, Aerosol Sci. Technol., 49, 842–855, https://doi.org/10.1080/02786826.2015.1078452, 2015.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bouaniche, A., Yon, J., Domingo, P., and Vervisch, L.: Analysis of the Soot Particle Size Distribution in a Laminar Premixed Flame: A Hybrid Stochastic/Fixed-Sectional Approach, Flow Turbul. Combust., 104, 753–775, https://doi.org/10.1007/s10494-019-00103-2, 2020.
Brem, B. T., Durdina, L., Siegerist, F., Beyerle, P., Bruderer, K., Rindlisbacher, T., Rocci-Denis, S., Andac, M. G., Zelina, J., Penanhoat, O., and Wang, J.: Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine, Environ. Sci. Technol., 49, 13149–13157, https://doi.org/10.1021/acs.est.5b04167, 2015.
Brooks, K. P., Snowden-Swan, L. J., Jones, S. B., Butcher, M. G., Lee, G. S. J., Anderson, D. M., Frye, J. G., Holladay, J. E., Owen, J., Harmon, L., Burton, F., Palou-Rivera, I., Plaza, J., Handler, R., and Shonnard, D.: Low-Carbon Aviation Fuel Through the Alcohol to Jet Pathway, in: Biofuels for Aviation: Feedstocks, Technology and Implementation, Elsevier Inc., 109–150, https://doi.org/10.1016/B978-0-12-804568-8.00006-8, 2016.
Camacho, J., Liu, C., Gu, C., Lin, H., Huang, Z., Tang, Q., You, X., Saggese, C., Li, Y., Jung, H., Deng, L., Wlokas, I., and Wang, H.: Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame, Combust Flame, 162, 3810–3822, https://doi.org/10.1016/j.combustflame.2015.07.018, 2015.
Carbone, F., Gleason, K., and Gomez, A.: Soot research: Relevance and priorities by mid-century, in: Combustion Chemistry and the Carbon Neutral Future, Elsevier Inc., 27–61, https://doi.org/10.1016/B978-0-323-99213-8.00007-2, 2023.
Cassee, F. R., Héroux, M. E., Gerlofs-Nijland, M. E., and Kelly, F. J.: Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission, Inhal. Toxicol., 25, 802–812, https://doi.org/10.3109/08958378.2013.850127, 2013.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Ceruti, A., Marzocca, P., Liverani, A., and Bil, C.: Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing, J. Comput. Des. Eng., 6, 516–526, https://doi.org/10.1016/j.jcde.2019.02.001, 2019.
Chong, S. T., Hassanaly, M., Koo, H., Mueller, M. E., Raman, V., and Geigle, K. P.: Large eddy simulation of pressure and dilution-jet effects on soot formation in a model aircraft swirl combustor, Combust Flame, 192, 452–472, https://doi.org/10.1016/j.combustflame.2018.02.021, 2018a.
Chong, S. T., Raman, V., Mueller, M. E., and Im, H. G.: The role of recirculation zones in soot formation in aircraft combustors, P. ASME Turbo Expo, 4B-2018, 1–9, https://doi.org/10.1115/GT2018-76217, 2018b.
Chu, H., Qi, J., Feng, S., Dong, W., Hong, R., Qiu, B., and Han, W.: Soot formation in high-pressure combustion: Status and challenges, Fuel, 345, 128236, https://doi.org/10.1016/j.fuel.2023.128236, 2023.
Commodo, M., D'Anna, A., De Falco, G., Larciprete, R., and Minutolo, P.: Illuminating the earliest stages of the soot formation by photoemission and Raman spectroscopy, Combust Flame, 181, 188–197, https://doi.org/10.1016/j.combustflame.2017.03.020, 2017.
Commodo, M., Kaiser, K., De Falco, G., Minutolo, P., Schulz, F., D'Anna, A., and Gross, L.: On the early stages of soot formation: Molecular structure elucidation by high-resolution atomic force microscopy, Combust Flame, 205, 154–164, https://doi.org/10.1016/j.combustflame.2019.03.042, 2019.
Delaval, M. N., Jonsdottir, H. R., Leni, Z., Keller, A., Brem, B. T., Siegerist, F., Schönenberger, D., Durdina, L., Elser, M., Salathe, M., Baumlin, N., Lobo, P., Burtscher, H., Liati, A., and Geiser, M.: Responses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine, Environ. Pollut., 307, 119521, https://doi.org/10.1016/j.envpol.2022.119521, 2022.
Delhaye, D., Ouf, F. X., Ferry, D., Ortega, I. K., Penanhoat, O., Peillon, S., Salm, F., Vancassel, X., Focsa, C., Irimiea, C., Harivel, N., Perez, B., Quinton, E., Yon, J., and Gaffie, D.: The MERMOSE project: Characterization of particulate matter emissions of a commercial aircraft engine, J. Aerosol Sci., 105, 48–63, https://doi.org/10.1016/j.jaerosci.2016.11.018, 2017.
De Oliveira, P. M., Fredrich, D., De Falco, G., El Helou, I., Anna, A. D., Giusti, A., and Mastorakos, E.: Soot-Free Low-NOx Aeronautical Combustor Concept: The Lean Azimuthal Flame for Kerosene Sprays, Energy and Fuels, 35, 7092–7106, https://doi.org/10.1021/acs.energyfuels.0c03860, 2021.
Dobbins, R. A.: Soot inception temperature and the carbonization rate of precursor particles, Combust Flame, 130, 204–214, https://doi.org/10.1016/S0010-2180(02)00374-7, 2002.
Durand, E., Lobo, P., Crayford, A., Sevcenco, Y., and Christie, S.: Impact of fuel hydrogen content on non-volatile particulate matter emitted from an aircraft auxiliary power unit measured with standardised reference systems, Fuel, 287, 119637, https://doi.org/10.1016/j.fuel.2020.119637, 2021.
Durdina, L., Brem, B. T., Abegglen, M., Lobo, P., Rindlisbacher, T., Thomson, K. A., Smallwood, G. J., Hagen, D. E., Sierau, B., and Wang, J.: Determination of PM mass emissions from an aircraft turbine engine using particle effective density, Atmos. Environ., 99, 500–507, https://doi.org/10.1016/j.atmosenv.2014.10.018, 2014.
Durdina, L., Lobo, P., Trueblood, M. B., Black, E. A., Achterberg, S., Hagen, D. E., Brem, B. T., and Wang, J.: Response of real-time black carbon mass instruments to mini-CAST soot, Aerosol Sci. Technol., 50, 906–918, https://doi.org/10.1080/02786826.2016.1204423, 2016.
Durdina, L., Brem, B. T., Setyan, A., Siegerist, F., Rindlisbacher, T., and Wang, J.: Assessment of Particle Pollution from Jetliners: From Smoke Visibility to Nanoparticle Counting, Environ. Sci. Technol., 51, 3534–3541, https://doi.org/10.1021/acs.est.6b05801, 2017.
Durdina, L., Brem, B. T., Schönenberger, D., Siegerist, F., Anet, J. G., and Rindlisbacher, T.: Nonvolatile Particulate Matter Emissions of a Business Jet Measured at Ground Level and Estimated for Cruising Altitudes, Environ. Sci. Technol., 53, 12865–12872, https://doi.org/10.1021/acs.est.9b02513, 2019.
Durdina, L., Brem, B. T., Elser, M., Sch, D., Siegerist, F., and Anet, J. G.: Reduction of Nonvolatile Particulate Matter Emissions of a Commercial Turbofan Engine at the Ground Level from the Use of a Sustainable Aviation Fuel Blend, Environ. Sci. Technol., 55, 14576–14585, https://doi.org/10.1021/acs.est.1c04744, 2021.
Eggersdorfer, M. L. and Pratsinis, S. E.: Agglomerates and aggregates of nanoparticles made in the gas phase, Adv. Powder Technol., 25, 71–90, 2014.
Elser, M., Brem, B. T., Durdina, L., Schönenberger, D., Siegerist, F., Fischer, A., and Wang, J.: Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels, Atmos. Chem. Phys., 19, 6809–6820, https://doi.org/10.5194/acp-19-6809-2019, 2019.
European Commission: Proposal for a Regulation of the European Parliment and of the council on ensuring a level playing field for sustainable air transport, European Comission, 26 pp., https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52021PC0561 (last access: 20 September 2023), 2021.
EASA: Fit for 55 and ReFuelEU Aviation: https://www.easa.europa.eu/en/light/topics/fit-55-and-refueleu-aviation (last access: 12 December 2023), 2023a.
EASA: ICAO Aircraft Engine Emissions Databank: https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank (last access: 8 August 2023), 2023b.
Foust, M. J., Thomsen, D., Stickles, R., Cooper, C., and Dodds, W.: Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1–9, https://doi.org/10.2514/6.2012-936, 2012.
Franzelli, B., Tardelli, L., Stöhr, M., Geigle, K. P., and Domingo, P.: Assessment of LES of intermittent soot production in an aero-engine model combustor using high-speed measurements, P. Combust. Institute, 39, 4821–4829, https://doi.org/10.1016/j.proci.2022.09.060, 2023.
Frenklach, M.: Reaction mechanism of soot formation in flames, Phys. Chem. Chem. Phys., 4, 2028–2037, https://doi.org/10.1039/b110045a, 2002.
Fric, T.: Low-emission combustor having perforated plate for lean direct injection, US Patent 5437158A, 1995.
Gao, K., Zhou, C.-W., Meier, E. J. B., and Kanji, Z. A.: Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles, Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, 2022.
George, R. E., Nevitt, J. S., and Verssen, J. A.: Jet aircraft operations: Impact on the air environment, J. Air Pollut. Control. Assoc., 22, 507–515, https://doi.org/10.1080/00022470.1972.10469667, 1972.
Gkantonas, S., Sirignano, M., Giusti, A., D'Anna, A., and Mastorakos, E.: Comprehensive soot particle size distribution modelling of a model Rich-Quench-Lean burner, Fuel, 270, 117483, https://doi.org/10.1016/j.fuel.2020.117483, 2020.
Goudeli, E., Eggersdorfer, M. L., and Pratsinis, S. E.: Coagulation-agglomeration of fractal-like particles: Structure and self-preserving size distribution, Langmuir, 31, 1320–1327, https://doi.org/10.1021/la504296z, 2015.
Han, J., Elgowainy, A., Cai, H., and Wang, M. Q.: Life-cycle analysis of bio-based aviation fuels, Bioresour. Technol., 150, 447–456, https://doi.org/10.1016/j.biortech.2013.07.153, 2013.
Harper, J., Durand, E., Bowen, P., Pugh, D., Johnson, M., and Crayford, A.: Influence of alternative fuel properties and combustor operating conditions on the nvPM and gaseous emissions produced by a small-scale RQL combustor, Fuel, 315, 123045, https://doi.org/10.1016/j.fuel.2021.123045, 2022.
El Helou, I., Skiba, A. W., and Mastorakos, E.: Experimental Investigation of Soot Production and Oxidation in a Lab-Scale Rich–Quench–Lean (RQL) Burner, Flow Turbul. Combust., 106, 1019–1041, https://doi.org/10.1007/s10494-020-00113-5, 2021.
ICAO: Annex 16 to the convention on international civil aviation: environmental protection, Vol. II – aircraft engine emissions, Montreal, CA, 4th Ed., ISBN 978-92-9275-129-6, 2017.
ICAO: Sustainable Aviation Fuels Guide, 1–66 pp., https://www.icao.int/environmental-protection/Documents/Sustainable Aviation Fuels Guide_100519.pdf (last access: 20 September 2023), 2018.
Johnson, T. J., Olfert, J. S., Symonds, J. P. R., Johnson, M., Rindlisbacher, T., Swanson, J. J., Boies, A. M., Thomson, K., Smallwood, G., Walters, D., Sevcenco, Y., Crayford, A., Dastanpour, R., Rogak, S. N., Durdina, L., Bahk, Y. K., Brem, B., and Wang, J.: Effective Density and Mass-Mobility Exponent of Aircraft Turbine Particulate Matter, J. Propuls. Power, 31, 573–580, https://doi.org/10.2514/1.B35367, 2015.
Kaiser, S., Schmitz, O., Ziegler, P., and Klingels, H.: The Water-Enhanced Turbofan as Enabler for Climate-Neutral Aviation, Appl. Sci., 12, 12431, https://doi.org/10.3390/app122312431, 2022.
Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nat. Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kelesidis, G. A. and Goudeli, E.: Self-preserving size distribution and collision frequency of flame-made nanoparticles in the transition regime, P. Combust. Institute, 38, 1233–1240, https://doi.org/10.1016/j.proci.2020.07.147, 2021.
Kelesidis, G. A. and Pratsinis, S. E.: A perspective on gas-phase synthesis of nanomaterials: Process design, impact and outlook, Chem. Eng. J., 421, 129884, https://doi.org/10.1016/j.cej.2021.129884, 2021.
Kelesidis, G. A., Goudeli, E., and Pratsinis, S. E.: Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation, P. Combust. Institute, 36, 29–50, https://doi.org/10.1016/j.proci.2016.08.078, 2017a.
Kelesidis, G. A., Goudeli, E., and Pratsinis, S. E.: Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth, Carbon, 121, 527–535, https://doi.org/10.1016/j.carbon.2017.06.004, 2017b.
Kelesidis, G. A., Kholghy, M. R., Zuercher, J., Robertz, J., Allemann, M., Duric, A., and Pratsinis, S. E.: Light scattering from nanoparticle agglomerates, Powder Technol., 365, 52–59, https://doi.org/10.1016/j.powtec.2019.02.003, 2020.
Kelesidis, G. A., Bruun, C. A., and Pratsinis, S. E.: The impact of organic carbon on soot light absorption, Carbon, 172, 742–749, https://doi.org/10.1016/j.carbon.2020.10.032, 2021.
Kelesidis, G. A., Neubauer, D., Fan, L. S., Lohmann, U., and Pratsinis, S. E.: Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates, Environ. Sci. Technol., 56, 8610–8618, https://doi.org/10.1021/acs.est.2c00428, 2022.
Kelesidis, G. A., Benz, S., and Pratsinis, S. E.: Process design for carbon black size and morphology, Carbon, 213, 118255, https://doi.org/10.1016/j.carbon.2023.118255, 2023a.
Kelesidis, G. A., Nagarkar, A., Trivanovic, U., and Pratsinis, S. E.: Toward Elimination of Soot Emissions from Jet Fuel Combustion, Environ. Sci. Technol., 57, 10276–10283, https://doi.org/10.1021/acs.est.3c01048, 2023b.
Kelly, F. J. and Fussell, J. C.: Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter, Atmos. Environ., 60, 504–526, https://doi.org/10.1016/j.atmosenv.2012.06.039, December 2012.
Khalid, S. A., Wojno, J. P., Breeze-Stringfellow, A., Lurie, D. P., Wood, T. H., Ramakrishnan, K., and Paliath, U.: Open rotor designs for low noise and high efficiency, P. ASME Turbo Expo, 6C, GT2013-94736, https://doi.org/10.1115/GT2013-94736, 2013.
Kholghy, M., Saffaripour, M., Yip, C., and Thomson, M. J.: The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1, Combust Flame, 160, 2119–2130, https://doi.org/10.1016/j.combustflame.2013.04.008, 2013.
Kim, D., Ekoto, I., Colban, W. F., and Miles, P. C.: In-cylinder CO and UHC imaging in a light-duty diesel engine during PPCI low-temperature combustion, SAE Int. J. Fuels Lubr., 1, 933–956, https://doi.org/10.4271/2008-01-1602, 2009.
Koudis, G. S., Hu, S. J., Majumdar, A., Jones, R., and Stettler, M. E. J.: Airport emissions reductions from reduced thrust takeoff operations, Transp. Res. D Transp. Environ., 52, 15–28, https://doi.org/10.1016/j.trd.2017.02.004, 2017.
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Dasilva, Y. A. R., Eggenschwiler, P. D., and Wang, J.: Electron microscopic study of soot particulate matter emissions from aircraft turbine engines, Environ. Sci. Technol., 48, 10975–10983, https://doi.org/10.1021/es501809b, 2014.
Liati, A., Schreiber, D., Alpert, P. A., Liao, Y., Brem, B. T., Corral Arroyo, P., Hu, J., Jonsdottir, H. R., Ammann, M., and Dimopoulos Eggenschwiler, P.: Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy, Environ. Pollut., 247, 658–667, https://doi.org/10.1016/j.envpol.2019.01.078, 2019.
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y. G., and Wang, L.: Review of modern low emissions combustion technologies for aero gas turbine engines, Prog. Aerospace Sci., 94, 12–45, https://doi.org/10.1016/j.paerosci.2017.08.001, 2017.
Lobo, P., Christie, S., Khandelwal, B., Blakey, S. G., and Raper, D. W.: Evaluation of Non-volatile Particulate Matter Emission Characteristics of an Aircraft Auxiliary Power Unit with Varying Alternative Jet Fuel Blend Ratios, Energy and Fuels, 29, 7705–7711, https://doi.org/10.1021/acs.energyfuels.5b01758, 2015a.
Lobo, P., Durdina, L., Smallwood, G. J., Rindlisbacher, T., Siegerist, F., Black, E. A., Yu, Z., Mensah, A. A., Hagen, D. E., Miake-Lye, R. C., Thomson, K. A., Brem, B. T., Corbin, J. C., Abegglen, M., Sierau, B., Whitefield, P. D., and Wang, J.: Measurement of aircraft engine non-volatile PM emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign, Aerosol Sci. Technol., 49, 472–484, https://doi.org/10.1080/02786826.2015.1047012, 2015b.
Marcolli, C., Mahrt, F., and Kärcher, B.: Soot PCF: pore condensation and freezing framework for soot aggregates, Atmos. Chem. Phys., 21, 7791–7843, https://doi.org/10.5194/acp-21-7791-2021, 2021.
Marhaba, I., Ferry, D., Laffon, C., Regier, T. Z., Ouf, F., and Parent, P.: Aircraft and MiniCAST soot at the nanoscale, Combust Flame, 204, 278–289, https://doi.org/10.1016/j.combustflame.2019.03.018, 2019.
Märkl, R. S., Voigt, C., Sauer, D., Dischl, R. K., Kaufmann, S., Harlaß, T., Hahn, V., Roiger, A., Weiß-Rehm, C., Burkhardt, U., Schumann, U., Marsing, A., Scheibe, M., Dörnbrack, A., Renard, C., Gauthier, M., Swann, P., Madden, P., Luff, D., Sallinen, R., Schripp, T., and Le Clercq, P.: Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails, Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, 2024.
Masiol, M. and Harrison, R. M.: Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review, Atmos. Environ., 95, 409–455, https://doi.org/10.1016/j.atmosenv.2014.05.070, 2014.
Messerer, A., Niessner, R., and Pöschl, U.: Comprehensive kinetic characterization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: Measurement, Langmuir-Hinshelwood, and Arrhenius parameters, Carbon, 44, 307–324, https://doi.org/10.1016/j.carbon.2005.07.017, 2006.
Miniero, L., Pandey, K., De Falco, G., D'Anna, A., and Noiray, N.: Soot-free and low-NO combustion of Jet A-1 in a lean azimuthal flame (LEAF) combustor with hydrogen injection, P. Combust. Institute, 39, 4309–4318, https://doi.org/10.1016/j.proci.2022.08.006, 2023.
Mongia, H. C.: GE aviation low emissions combustion technology evolution, SAE Technical Papers, 776–790, https://doi.org/10.4271/2007-01-3924, 2007.
Montzka, S. A., Dlugokencky, E. J., and Butler, J. H.: Non-CO2 greenhouse gases and climate change, Nature, 476, 43–50, https://doi.org/10.1038/nature10322, 2011.
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick, D., Shook, M., Slover, G., Voigt, C., White, R., Winstead, E., Yasky, R., Ziemba, L. D., Brown, A., Schlager, H., and Anderson, B. E.: Biofuel blending reduces particle emissions from aircraft engines at cruise conditions, Nature, 543, 411–415, https://doi.org/10.1038/nature21420, 2017.
National Academies of Sciences Engineering and Medicine: Options for Reducing Lead Emissions from Piston-Engine Aircraft, The National Academies Press, https://doi.org/10.17226/26050, 2021.
Nguyen, T. H., Tri Nguyen, P., and Garnier, F.: Evaluation of the relationship between the aerothermodynamic process and operational parameters in the high-pressure turbine of an aircraft engine, Aerosp. Sci. Technol., 86, 93–105, https://doi.org/10.1016/j.ast.2019.01.011, 2019.
Niranjan, R. and Thakur, A. K.: The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on Oxidative stress and inflammatory pathways, Front. Immunol., 8, 763, https://doi.org/10.3389/fimmu.2017.00763, 2017.
Novic, A. S., Troth, D. L. L., Notardonato, J., Novick, A. S., Troth, D. L. L., and Notardonato, J.: Multifuel Evaluation of Rich/Quench/Lean Combustor, in: Proceedings of the ASME 1983 International Gas Turbine Conference and Exhibit, 1–8, https://doi.org/10.1115/83-GT-140, 1983.
Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T. Z., Ortega, I. K., Chazallon, B., Carpentier, Y., and Focsa, C.: Nanoscale characterization of aircraft soot: A high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study, Carbon, 101, 86–100, https://doi.org/10.1016/j.carbon.2016.01.040, 2016.
Prabhakar, N., Heyerdahl, L., Jha, A., and Karbowski, D.: Energy Impacts of Electric Aircraft: An Overview, AIAA AVIATION 2022 Forum, https://doi.org/10.2514/6.2022-4119, 2022.
Ramadan, Z., Song, X. H., and Hopke, P. K.: Identification of sources of phoenix aerosol by positive matrix factorization, J. Air Waste Manage. Assoc., 50, 1308–1320, https://doi.org/10.1080/10473289.2000.10464173, 2000.
Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., and Löndahl, J.: Experimental determination of deposition of diesel exhaust particles in the human respiratory tract, J. Aerosol Sci., 48, 18–33, https://doi.org/10.1016/j.jaerosci.2012.01.005, 2012.
Rizk, N. K. and Mongia, H. C.: Ultra-Low NOx Rich-Lean Combustion, American Society of Mechanical Engineers, 1–11 pp., https://doi.org/10.1115/90-GT-087, 1990.
Saffaripour, M., Tay, L. L., Thomson, K. A., Smallwood, G. J., Brem, B. T., Durdina, L., and Johnson, M.: Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines, Aerosol Sci. Technol., 51, 518–531, https://doi.org/10.1080/02786826.2016.1274368, 2017.
Schäfer, A. W., Barrett, S. R. H., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., O'Sullivan, A., Synodinos, A. P., and Torija, A. J.: Technological, economic and environmental prospects of all-electric aircraft, Nat. Energy, 4, 160–166, https://doi.org/10.1038/s41560-018-0294-x, 2019.
Schäppi, R., Rutz, D., Dähler, F., Muroyama, A., Haueter, P., Lilliestam, J., Patt, A., Furler, P., and Steinfeld, A.: Drop-in fuels from sunlight and air, Nature, 601, 63–68, https://doi.org/10.1038/s41586-021-04174-y, 2022.
Schripp, T., Herrmann, F., Oßwald, P., Köhler, M., Zschocke, A., Weigelt, D., Mroch, M., and Werner-Spatz, C.: Particle emissions of two unblended alternative jet fuels in a full scale jet engine, Fuel, 256, https://doi.org/10.1016/j.fuel.2019.115903, 2019.
Schripp, T., Grein, T., Zinsmeister, J., Oßwald, P., Köhler, M., Müller-Langer, F., Hauschild, S., Marquardt, C., Scheuermann, S., Zschocke, A., and Posselt, D.: Technical application of a ternary alternative jet fuel blend – Chemical characterization and impact on jet engine particle emission, Fuel, 288, https://doi.org/10.1016/j.fuel.2020.119606, 2021.
Schulz, F., Commodo, M., Kaiser, K., De Falco, G., Minutolo, P., Meyer, G., D'Anna, A., and Gross, L.: Insights into incipient soot formation by atomic force microscopy, P. Combust. Institute, 37, 885–892, https://doi.org/10.1016/j.proci.2018.06.100, 2019.
Sharma, A., Mukut, K. M., Roy, S. P., and Goudeli, E.: The coalescence of incipient soot clusters, Carbon, 180, 215–225, https://doi.org/10.1016/j.carbon.2021.04.065, 2021.
Staples, M. D., Malina, R., Suresh, P., Hileman, J. I., and Barrett, S. R. H.: Aviation CO2 emissions reductions from the use of alternative jet fuels, Energy Pol., 114, 342–354, https://doi.org/10.1016/j.enpol.2017.12.007, 2018.
Stettler, M. E. J., Boies, A. M., Petzold, A., and Barrett, S. R. H.: Global civil aviation black carbon emissions, Environ. Sci. Technol., 47, 10397–10404, https://doi.org/10.1021/es401356v, 2013.
Stuber, N., Forster, P., Rädel, G., and Shine, K.: The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing, Nature, 441, 864–867, https://doi.org/10.1038/nature04877, 2006.
Teoh, R., Schumann, U., Majumdar, A., and Stettler, M. E. J.: Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption, Environ. Sci. Technol., 54, 2941–2950, https://doi.org/10.1021/acs.est.9b05608, 2020.
Teoh, R., Schumann, U., Gryspeerdt, E., Shapiro, M., Molloy, J., Koudis, G., Voigt, C., and Stettler, M. E. J.: Aviation contrail climate effects in the North Atlantic from 2016 to 2021, Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, 2022a.
Teoh, R., Schumann, U., Voigt, C., Schripp, T., Shapiro, M., Engberg, Z., Molloy, J., Koudis, G., and Stettler, M. E. J.: Targeted Use of Sustainable Aviation Fuel to Maximize Climate Benefits, Environ. Sci. Technol., 56, 17246–17255, https://doi.org/10.1021/acs.est.2c05781, 2022b.
Teoh, R., Engberg, Z., Shapiro, M., Dray, L., and Stettler, M. E. J.: The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021, Atmos. Chem. Phys., 24, 725–744, https://doi.org/10.5194/acp-24-725-2024, 2024.
Testa, B., Durdina, L., Alpert, P. A., Mahrt, F., Dreimol, C. H., Edebeli, J., Spirig, C., Decker, Z. C. J., Anet, J., and Kanji, Z. A.: Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures, Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, 2024.
Trivanovic, U., Kelesidis, G. A., and Pratsinis, S. E.: High-throughput generation of aircraft-like soot, Aerosol Sci. Technol., 56, 732–743, https://doi.org/10.1080/02786826.2022.2070055, 2022.
Trivanovic, U., Pereira Martins, M., Benz, S., Kelesidis, G. A., and Pratsinis, S. E.: Dynamics of soot surface growth and agglomeration by enclosed spray combustion of jet fuel, Fuel, 342, 127864, https://doi.org/10.1016/j.fuel.2023.127864, 2023.
Undavalli, V., Gbadamosi Olatunde, O. B., Boylu, R., Wei, C., Haeker, J., Hamilton, J., and Khandelwal, B.: Recent advancements in sustainable aviation fuels, P. Aerospace Sci., 136, 100876, https://doi.org/10.1016/j.paerosci.2022.100876, 2023.
Vander Wal, R. L., Bryg, V. M., and Hays, M. D.: Fingerprinting soot (towards source identification): Physical structure and chemical composition, J. Aerosol Sci., 41, 108–117, https://doi.org/10.1016/j.jaerosci.2009.08.008, 2010.
Vander Wal, R. L., Bryg, V. M., and Huang, C. H.: Aircraft engine particulate matter: Macro- micro- and nanostructure by HRTEM and chemistry by XPS, Combust Flame, 161, 602–611, https://doi.org/10.1016/j.combustflame.2013.09.003, 2014.
Wang, H.: Formation of nascent soot and other condensed-phase materials in flames, P. Combust. Institute, 33, 41–67, https://doi.org/10.1016/j.proci.2010.09.009, 2011.
Xue, X., Hui, X., Vannorsdall, P., Singh, P., and Sung, C. J.: The blending effect on the sooting tendencies of alternative/conventional jet fuel blends in non-premixed flames, Fuel, 237, 648–657, https://doi.org/10.1016/j.fuel.2018.09.157, 2019.
Yang, Y., Boehman, A. L., and Santoro, R. J.: A study of jet fuel sooting tendency using the threshold sooting index (TSI) model, Combust Flame, 149, 191–205, https://doi.org/10.1016/j.combustflame.2006.11.007, 2007.
Short summary
Aircraft are an important source of both soot aerosols and pollutants, like CO2 and nitrogen oxides (NOx), which also negatively affect human health and the environment. In many cases, strategies to reduce one pollutant may increase another. So, it is vital to have a quantitative understanding of the contribution of each pollutant to negative outcomes so that trade-offs can be made. Here, we review methods to reduce aircraft soot emissions through the use of fuel, engine design, and operation.
Aircraft are an important source of both soot aerosols and pollutants, like CO2 and nitrogen...
Altmetrics
Final-revised paper
Preprint