Articles | Volume 3, issue 1
https://doi.org/10.5194/ar-3-237-2025
https://doi.org/10.5194/ar-3-237-2025
Research article
 | 
19 May 2025
Research article |  | 19 May 2025

Growth of atmospheric freshly nucleated particles: a semi-empirical molecular dynamics study

Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm

Related authors

Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025,https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Base synergy in freshly nucleated particles
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025,https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Cluster-to-particle transition in atmospheric nanoclusters
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024,https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
A cluster-of-functional-groups approach for studying organic enhanced atmospheric cluster formation
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024,https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary

Related subject area

Fundamental Aerosol Research (FAR)
Particle deliquescence in a turbulent humidity field
Dennis Niedermeier, Rasmus Hoffmann, Silvio Schmalfuss, Wiebke Frey, Fabian Senf, Olaf Hellmuth, Mira Pöhlker, and Frank Stratmann
Aerosol Research, 3, 219–230, https://doi.org/10.5194/ar-3-219-2025,https://doi.org/10.5194/ar-3-219-2025, 2025
Short summary
Investigation of soot precursor molecules during inception by acetylene pyrolysis using reactive molecular dynamics
Anindya Ganguly, Khaled Mosharraf Mukut, Somesh Roy, Georgios Kelesidis, and Eirini Goudeli
Aerosol Research, 3, 185–203, https://doi.org/10.5194/ar-3-185-2025,https://doi.org/10.5194/ar-3-185-2025, 2025
Short summary
The impact of unimolecular reactions on acyl peroxy radical initiated isoprene oxidation
Ida Karppinen, Dominika Pasik, Emelda Ahongshangbam, and Nanna Myllys
Aerosol Research, 3, 175–183, https://doi.org/10.5194/ar-3-175-2025,https://doi.org/10.5194/ar-3-175-2025, 2025
Short summary
Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025,https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Base synergy in freshly nucleated particles
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025,https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary

Cited articles

Almeida, J., Schobesberger, S., Kürten, A., et al.: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a
Anderson, K. E., Siepmann, J. I., McMurry, P. H., and VandeVondele, J.: Importance of the Number of Acid Molecules and the Strength of the Base for Double-Ion Formation in (H2SO4)mBase(H2O)6 Clusters, J. Am. Chem. Soc., 130, 14144–14147, https://doi.org/10.1021/ja8019774, 2008. a
Arquero, K. D., Gerber, R. B., and Finlayson-Pitts, B. J.: The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water, Environ. Sci. Technol., 51, 2124–2130, https://doi.org/10.1021/acs.est.6b05056, 2017a. a
Arquero, K. D., Xu, J., Gerber, R. B., and Finlayson-Pitts, B. J.: Particle Formation and Growth from Oxalic acid, Methanesulfonic Acid, Trimethylamine and Water: a Combined Experimental and Theoretical Study, Phys. Chem. Chem. Phys., 19, 28286–28301, https://doi.org/10.1039/C7CP04468B, 2017b. a
Ayoubi, D., Knattrup, Y., and Elm, J.: Clusteromics V: Organic Enhanced Atmospheric Cluster Formation, ACS Omega, 8, 9621–9629, https://doi.org/10.1021/acsomega.3c00251, 2023. a
Download
Short summary
Aerosols, a large uncertainty in climate modeling, can be formed when gas vapors and particles begin sticking together. Traditionally, these particles are assumed to behave like hard spheres that only stick together upon head-on collisions. In reality, particles can attract each other over distances, leading to more frequent sticking events. We found that traditional models significantly undercount these events, with real sticking rates being up to 2.4 times higher.
Share
Altmetrics
Final-revised paper
Preprint