Articles | Volume 3, issue 1
https://doi.org/10.5194/ar-3-125-2025
https://doi.org/10.5194/ar-3-125-2025
Research article
 | 
28 Feb 2025
Research article |  | 28 Feb 2025

Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles

Yosef Knattrup and Jonas Elm

Related authors

Effect of humidity on the first steps of atmospheric new particles formation: Computational study of hydrated molecular clusters
Ivo Neefjes, Yosef Knattrup, Haide Wu, Georg Baadsgaard Trolle, Jonas Elm, and Jakub Kubečka
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-30,https://doi.org/10.5194/ar-2025-30, 2025
Preprint under review for AR
Short summary
Growth of atmospheric freshly nucleated particles: a semi-empirical molecular dynamics study
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025,https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Base synergy in freshly nucleated particles
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025,https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Cluster-to-particle transition in atmospheric nanoclusters
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024,https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
A cluster-of-functional-groups approach for studying organic enhanced atmospheric cluster formation
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024,https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary

Cited articles

Almeida, J., Schobesberger, S., Kürten, A., et al.: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a
Ayoubi, D., Knattrup, Y., and Elm, J.: Clusteromics V: Organic Enhanced Atmospheric Cluster Formation, ACS Omega, 8, 9621–9629, https://doi.org/10.1021/acsomega.3c00251, 2023. a, b
Bannwarth, C., Caldeweyher, E., Ehlert, S., Hansen, A., Pracht, P., Seibert, J., Spicher, S., and Grimme, S.: Extended Tight-Binding Quantum Chemistry Methods, WIREs Comput. Mol. Sci., 11, e1493, https://doi.org/10.1002/wcms.1493, 2021. a
Boucher, O. and Lohmann, U.: The Sulfate-CCN-Cloud Albedo Effect, Tellus B, 47, 281–300, https://doi.org/10.3402/tellusb.v47i3.16048, 1995. a, b, c
Brandenburg, J. G., Bannwarth, C., Hansen, A., and Grimme, S.: B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method, J. Chem. Phys., 148, 064104, https://doi.org/10.1063/1.5012601, 2018. a
Download
Short summary
Using quantum chemical methods, we studied the uptake of first-generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic–organic interactions during co-condensation onto the particle contribute to the growth.

Share
Altmetrics
Final-revised paper
Preprint