Articles | Volume 3, issue 2
https://doi.org/10.5194/ar-3-461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-3-461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decay-phase aerosol dynamics of an indoor particle source have a significant role in exposure analysis
Kuisma Vesisenaho
CORRESPONDING AUTHOR
Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
Heino Kuuluvainen
Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
Ukko-Ville Mäkinen
Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
Miska Olin
Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
Panu Karjalainen
Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
Related authors
No articles found.
Henri Oikarinen, Anni Hartikainen, Pauli Simonen, Miska Olin, Ukko-Ville Mäkinen, Petteri Marjanen, Laura Salo, Ville Silvonen, Sampsa Martikainen, Jussi Hoivala, Mika Ihalainen, Pasi Miettinen, Pasi Yli-Pirilä, Olli Sippula, Santtu Mikkonen, and Panu Karjalainen
Atmos. Meas. Tech., 18, 4271–4292, https://doi.org/10.5194/amt-18-4271-2025, https://doi.org/10.5194/amt-18-4271-2025, 2025
Short summary
Short summary
Fuel-operated auxiliary heaters are used in vehicles to provide extra heating to improve passenger comfort and vehicle functionality in cold climates. Currently heater emissions are not regulated as part of vehicle emissions, so this research was done to assess harmful gaseous and airborne particle emissions from them. Heaters were found to be major source of particles, especially when particles formed after combustion were accounted for, and large carbon monoxide emissions were also observed.
Fanni Mylläri, Niina Kuittinen, Minna Aurela, Teemu Lepistö, Paavo Heikkilä, Laura Salo, Lassi Markkula, Panu Karjalainen, Joel Kuula, Sami Harni, Katriina Kyllönen, Satu Similä, Katriina Jalkanen, Joakim Autio, Marko Palonen, Jouni Valtatie, Anna Häyrinen, Hilkka Timonen, and Topi Rönkkö
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-14, https://doi.org/10.5194/ar-2025-14, 2025
Preprint under review for AR
Short summary
Short summary
This study examined particle emissions from a large-scale biomass heating plant. Efficient flue gas cleaning, especially with bag-house filters, significantly reduced primary emissions. However, the potential for secondary aerosol formation was found to be 100–1000 times higher than primary emissions, highlighting the need for further research to support air quality and climate goals.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024, https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Short summary
Secondary aerosol is formed in the atmosphere from gaseous emissions. Oxidation flow reactors used in secondary aerosol research do not immediately respond to changes in the inlet concentration of gases because of their broad transfer functions. This may result in incorrect secondary aerosol production factors determined for vehicles. We studied the extent of possible errors and found that oxidation flow reactors with faster responses result in smaller errors.
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023, https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Short summary
Emission factor calculation was studied to provide models that do not use traditional CO2-based calculation in exhaust plume analysis. Two types of models, one based on the physical dependency of dilution of the exhaust flow rate and speed and two based on the statistical, measured dependency of dilution of the exhaust flow rate, acceleration, speed, altitude change, and/or wind, were developed. These methods could possibly be extended to also calculate non-exhaust emissions in the future.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364, https://doi.org/10.5194/acp-23-9347-2023, https://doi.org/10.5194/acp-23-9347-2023, 2023
Short summary
Short summary
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on pollutant concentrations than aerosol processes (18 %). Additionally, our results showed that with solar radiation included, pollutant concentrations were closer to observations (−13 %) than with only aerosol processes (+98 %). This has implications when planning simulations under calm conditions such as in our case and when deciding whether or not simulations need to include these processes.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Miska Olin, David Patoulias, Heino Kuuluvainen, Jarkko V. Niemi, Topi Rönkkö, Spyros N. Pandis, Ilona Riipinen, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 1131–1148, https://doi.org/10.5194/acp-22-1131-2022, https://doi.org/10.5194/acp-22-1131-2022, 2022
Short summary
Short summary
An emission factor particle size distribution was determined from the measurements at an urban traffic site. It was used in updating a pre-existing emission inventory, and regional modeling was performed after the update. Emission inventories typically underestimate nanoparticle emissions due to challenges in determining them with high certainty. This update reveals that the simulated aerosol levels have previously been underestimated especially for urban areas and for sub-50 nm particles.
Magdalena Okuljar, Heino Kuuluvainen, Jenni Kontkanen, Olga Garmash, Miska Olin, Jarkko V. Niemi, Hilkka Timonen, Juha Kangasluoma, Yee Jun Tham, Rima Baalbaki, Mikko Sipilä, Laura Salo, Henna Lintusaari, Harri Portin, Kimmo Teinilä, Minna Aurela, Miikka Dal Maso, Topi Rönkkö, Tuukka Petäjä, and Pauli Paasonen
Atmos. Chem. Phys., 21, 9931–9953, https://doi.org/10.5194/acp-21-9931-2021, https://doi.org/10.5194/acp-21-9931-2021, 2021
Short summary
Short summary
To estimate the relative contribution of different sources to the particle population in an urban environment, we conducted simultaneous measurements at a street canyon and an urban background station in Helsinki. We investigated the contribution of traffic and new particle formation to particles with a diameter between 1 and 800 nm. We found that during spring traffic does not dominate the particles smaller than 3 nm at either of the stations.
Cited articles
Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review, Atmospheric Environment, 71, 260–294, https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013. a, b
Ahmed, T., Kumar, P., and Mottet, L.: Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality, Renewable and Sustainable Energy Reviews, 138, 110669, https://doi.org/10.1016/j.rser.2020.110669, 2021. a
Bhangar, S., Mullen, N., Hering, S., Kreisberg, N., and Nazaroff, W. W.: Ultrafine particle concentrations and exposures in seven residences in northern California, Indoor Air, 21, 132–144, https://doi.org/10.1111/j.1600-0668.2010.00689.x, 2011. a
Buonanno, G., Morawska, L., and Stabile, L.: Particle emission factors during cooking activities, Atmospheric Environment, 43, 3235–3242, https://doi.org/10.1016/j.atmosenv.2009.03.044, 2009. a, b, c, d
Buonanno, G., Giovinco, G., Morawska, L., and Stabile, L.: Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy, Atmospheric Environment, 45, 6216–6224, https://doi.org/10.1016/j.atmosenv.2011.07.066, 2011. a
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope Iii, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., Van Donkelaar, A., Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A., Marra, M., Atkinson, R. W., Tsang, H., Thach, T. Q., Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter, Proceedings of the National Academy of Sciences of the United States of America, 115, 9592–9597, https://doi.org/10.1073/pnas.1803222115, 2018. a
Chen, J. and Hoek, G.: Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis, Environment International, 143, https://doi.org/10.1016/j.envint.2020.105974, 2020. a
Cohen, A., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, The Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Crump, J. G., Flagan, R. C., and Seinfeld, J. H.: Particle wall loss rates in vessels, Aerosol Science and Technology, 2, 303–309, https://doi.org/10.1080/02786828308958636, 1982. a
Dimitroulopoulou, C.: Ventilation in European dwellings: A review, Building and Environment, 47, 109–125, https://doi.org/10.1016/j.buildenv.2011.07.016, 2012. a
Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., and Stone, V.: The pulmonary toxicology of ultrafine particles, Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 15, 213–220, https://doi.org/10.1089/089426802320282338, 2002. a
EPA: Exposure Factors Handbook 2011 Edition (Final Report), U.S. Environmental Protection Agency, EPA/600/R-09/052F, 2011. a
EPA: National Ambient Air Quality Standards for Particulate Matter, Federal Register, 78, https://www.govinfo.gov/content/pkg/FR-2013-01-15/pdf/2012-30946.pdf (last access: 13 June 2024), 2013. a
EU: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, Official Journal of the European Union, http://data.europa.eu/eli/dir/2008/50/oj (last access: 13 June 2024), 2008. a
Eurostat: Population on 1 January by age groups and sex – cities and greater cities, Eurostat [data set], https://doi.org/10.2908/URB_CPOP1, 2024. a
Fierz, M., Houle, C., Steigmeier, P., and Burtscher, H.: Design, calibration, and field performance of a miniature diffusion size classifier, Aerosol Science and Technology, 45, 1–10, https://doi.org/10.1080/02786826.2010.516283, 2011. a, b, c, d
Fierz, M., Meier, D., Steigmeier, P., and Burtscher, H.: Aerosol measurement by induced currents, Aerosol Science and Technology, 48, 350–357, https://doi.org/10.1080/02786826.2013.875981, 2014. a, b
Geiss, O., Bianchi, I., and Barrero-Moreno, J.: Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments, Journal of Aerosol Science, 96, 24–37, https://doi.org/10.1016/j.jaerosci.2016.02.007, 2016. a
Hama, S. M., Ma, N., Cordell, R. L., Kos, G. P., Wiedensohler, A., and Monks, P. S.: Lung deposited surface area in Leicester urban background site/UK: Sources and contribution of new particle formation, Atmospheric Environment, 151, 94–107, https://doi.org/10.1016/j.atmosenv.2016.12.002, 2017. a
Hänninen, O. O., Palonen, J., Tuomisto, J. T., Yli-Tuomi, T., Seppänen, O., and Jantunen, M. J.: Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings, Indoor Air, 15, 246–256, https://doi.org/10.1111/j.1600-0668.2005.00365.x, 2005. a
Hussein, T., Glytsos, T., Ondráček, J., Dohányosová, P., Ždímal, V., Hämeri, K., Lazaridis, M., Smolík, J., and Kulmala, M.: Particle size characterization and emission rates during indoor activities in a house, Atmospheric Environment, 40, 4285–4307, https://doi.org/10.1016/j.atmosenv.2006.03.053, 2006. a, b, c, d, e
Hussein, T., Hruška, A., Dohányosová, P., Džumbová, L., Hemerka, J., Kulmala, M., and Smolík, J.: Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber, Atmospheric Environment, 43, 905–914, https://doi.org/10.1016/j.atmosenv.2008.10.059, 2009. a
Hussein, T., Paasonen, P., and Kulmala, M.: Activity pattern of a selected group of school occupants and their family members in Helsinki – Finland, Science of the Total Environment, 425, 289–292, https://doi.org/10.1016/j.scitotenv.2012.03.002, 2012. a, b
ICRP: Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection, Annals of the ICRP, 24, 1–482, ISSN 0146-6453, 1994. a
Isaxon, C., Gudmundsson, A., Nordin, E., Lönnblad, L., Dahl, A., Wieslander, G., Bohgard, M., and Wierzbicka, A.: Contribution of indoor-generated particles to residential exposure, Atmospheric Environment, 106, 458–466, https://doi.org/10.1016/j.atmosenv.2014.07.053, 2015. a, b, c
Kang, K., Kim, H., Kim, D. D., Lee, Y. G., and Kim, T.: Characteristics of cooking-generated PM10 and PM2.5 in residential buildings with different cooking and ventilation types, Science of the Total Environment, 668, 56–66, https://doi.org/10.1016/j.scitotenv.2019.02.316, 2019. a, b, c
Kanninen, K., Lampinen, R., Rantanen, L., Odendaal, L., Jalava, P., Chew, S., and White, A.: Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration, Neurochemistry International, 136, 104729, https://doi.org/10.1016/j.neuint.2020.104729, 2020. a
Kim, H., Kang, K., and Kim, T.: Measurement of particulate matter (PM2.5) and health risk assessment of cooking-generated particles in the kitchen and living rooms of apartment houses, Sustainability, 10, https://doi.org/10.3390/su10030843, 2018. a, b
Kim, K.-H., Kabir, E., and Kabir, S.: A review on the human health impact of airborne particulate matter, Environment International, 74, 136–143, https://doi.org/10.1016/j.envint.2014.10.005, 2015. a
Kuula, J., Kuuluvainen, H., Rönkkö, T., Niemi, J. V., Saukko, E., Portin, H., Aurela, M., Saarikoski, S., Rostedt, A., Hillamo, R., and Timonen, H.: Applicability of optical and diffusion charging-based particulate matter sensors to urban air quality measurements, Aerosol and Air Quality Research, 19, 1024–1039, https://doi.org/10.4209/aaqr.2018.04.0143, 2019. a, b
Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H., Kousa, A., Aurela, M., Rönkkö, T., and Timonen, H.: Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources, Aerosol Science and Technology, 54, 190–202, https://doi.org/10.1080/02786826.2019.1668909, 2020. a, b, c
Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P., Lähde, T., Pirjola, L., Niemi, J. V., Hillamo, R., and Keskinen, J.: Lung deposited surface area size distributions of particulate matter in different urban areas, Atmospheric Environment, 136, 105–113, https://doi.org/10.1016/j.atmosenv.2016.04.019, 2016. a
Lai, A.: Particle deposition indoors: A review, Indoor Air, 12, 211–214, https://doi.org/10.1046/j.0905-6947.2002.1r159a.x, 2002. a, b
Lepistö, T., Lintusaari, H., Oudin, A., Barreira, L. M. F., Niemi, J. V., Karjalainen, P., Salo, L., Silvonen, V., Markkula, L., Hoivala, J., Marjanen, P., Martikainen, S., Aurela, M., Reyes, F. R., Oyola, P., Kuuluvainen, H., Manninen, H. E., Schins, R. P. F., Vojtisek-Lom, M., Ondracek, J., Topinka, J., Timonen, H., Jalava, P., Saarikoski, S., and Rönkkö, T.: Particle lung deposited surface area (LDSAal) size distributions in different urban environments and geographical regions: Towards understanding of the PM2.5 dose–response, Environment International, 180, https://doi.org/10.1016/j.envint.2023.108224, 2023. a, b, c
Li, X., Jin, L., and Kan, H.: Air pollution: a global problem needs local fixes, Nature, 570, 437–439, https://doi.org/10.1038/d41586-019-01960-7, 2019. a
Liu, Q., Xu, C., Ji, G., Liu, H., Shao, W., Zhang, C., Gu, A., and Zhao, P.: Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: A meta-analysis of cohort studies, Journal of Biomedical Research, 31, 130–142, https://doi.org/10.7555/JBR.31.20160071, 2017. a
Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B., and Donaldson, K.: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area, Occupational and Environmental Medicine, 64, 609–615, https://doi.org/10.1136/oem.2005.024802, 2007. a
Morawska, L., Afshari, A., Bae, G., Buonanno, G., Chao, C., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E., Pasanen, P., Salthammer, T., Waring, M., and Wierzbicka, A.: Indoor aerosols: From personal exposure to risk assessment, Indoor Air, 23, 462–487, https://doi.org/10.1111/ina.12044, 2013. a
Mullen, N. A., Liu, C., Zhang, Y., Wang, S., and Nazaroff, W. W.: Ultrafine particle concentrations and exposures in four high-rise Beijing apartments, Atmospheric Environment, 45, 7574–7582, https://doi.org/10.1016/j.atmosenv.2010.07.060, 2011. a
Nazaroff, W. W.: Indoor particle dynamics, Indoor Air, Supplement, 14, 175–183, https://doi.org/10.1111/j.1600-0668.2004.00286.x, 2004. a, b, c
Nazaroff, W. W. and Cass, G. R.: Mathematical Modeling of Indoor Aerosol Dynamics, Environmental Science and Technology, 23, 157–166, https://doi.org/10.1021/es00179a003, 1989. a
Nemmar, A., Hoet, P., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., Vanbilloen, H., Mortelmans, L., and Nemery, B.: Passage of inhaled particles into the blood circulation in humans, Circulation, 105, 411–414, https://doi.org/10.1161/hc0402.104118, 2002. a
Niculita-Hirzel, H.: Latest trends in pollutant accumulations at threatening levels in energy-efficient residential buildings with and without mechanical ventilation: A Review, International Journal of Environmental Research and Public Health, 19, 3538, https://doi.org/10.3390/ijerph19063538, 2022. a
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C.: Translocation of inhaled ultrafine particles to the brain, Inhalation Toxicology, 16, 437–445, https://doi.org/10.1080/08958370490439597, 2004. a
Oberdörster, G., Oberdörster, E., and Oberdörster, J.: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environmental Health Perspectives, 113, 823–839, https://doi.org/10.1289/ehp.7339, 2005. a
Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., and Hoffmann, B.: Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence, International Journal of Public Health, 64, 547–559, https://doi.org/10.1007/s00038-019-01202-7, 2019. a
Pacitto, A., Stabile, L., Moreno, T., Kumar, P., Wierzbicka, A., Morawska, L., and Buonanno, G.: The influence of lifestyle on airborne particle surface area doses received by different Western populations, Environmental Pollution, 232, 113–122, https://doi.org/10.1016/j.envpol.2017.09.023, 2018. a, b, c, d, e, f, g, h, i, j, k
Pacitto, A., Stabile, L., Morawska, L., Nyarku, M., Torkmahalleh, M. A., Akhmetvaliyeva, Z., Andrade, A., Dominski, F. H., Mantecca, P., Shetaya, W. H., Mazaheri, M., Jayaratne, R., Marchetti, S., Hassan, S. K., El-Mekawy, A., Mohamed, E. F., Canale, L., Frattolillo, A., and Buonanno, G.: Daily submicron particle doses received by populations living in different low- and middle-income countries, Environmental Pollution, 269, https://doi.org/10.1016/j.envpol.2020.116229, 2021. a, b, c, d, e, f, g, h, i
Park, J., Jee, N.-Y., and Jeong, J.-W.: Effects of types of ventilation system on indoor particle concentrations in residential buildings, Indoor Air, 24, 629–638, https://doi.org/10.1111/ina.12117, 2014. a
Rostedt, A., Arffman, A., Janka, K., Yli-Ojanperä, J., and Keskinen, J.: Characterization and response model of the PPS-M aerosol sensor, Aerosol Science and Technology, 48, 1022–1030, https://doi.org/10.1080/02786826.2014.951023, 2014. a
Salo, L., Hyvärinen, A., Jalava, P., Teinilä, K., Hooda, R. K., Datta, A., Saarikoski, S., Lintusaari, H., Lepistö, T., Martikainen, S., Rostedt, A., Sharma, V. P., Rahman, M. H., Subudhi, S., Asmi, E., Niemi, J. V., Lihavainen, H., Lal, B., Keskinen, J., Kuuluvainen, H., Timonen, H., and Rönkkö, T.: The characteristics and size of lung-depositing particles vary significantly between high and low pollution traffic environments, Atmospheric Environment, 255, https://doi.org/10.1016/j.atmosenv.2021.118421, 2021. a, b
Schmid, O. and Stoeger, T.: Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung, Journal of Aerosol Science, 99, 133–143, https://doi.org/10.1016/j.jaerosci.2015.12.006, 2016. a
Schraufnagel, D. E.: The health effects of ultrafine particles, Experimental and Molecular Medicine, 52, 311–317, https://doi.org/10.1038/s12276-020-0403-3, 2020. a
Silvonen, V., Salo, L., Raunima, T., Vojtisek-Lom, M., Ondracek, J., Topinka, J., Schins, R. P., Lepistö, T., Lintusaari, H., Saarikoski, S., Barreira, L. M., Hoivala, J., Markkula, L., Kulmala, I., Vinha, J., Karjalainen, P., and Rönkkö, T.: Lung-depositing surface area (LDSA) of particles in office spaces around Europe: Size distributions, I O-ratios and infiltration, Building and Environment, 246, https://doi.org/10.1016/j.buildenv.2023.110999, 2023. a, b
Tang, R., Sahu, R., Su, Y., Milsom, A., Mishra, A., Berkemeier, T., and Pfrang, C.: Impact of Cooking Methods on Indoor Air Quality: A Comparative Study of Particulate Matter (PM) and Volatile Organic Compound (VOC) Emissions, Indoor Air, 2024, https://doi.org/10.1155/2024/6355613, 2024. a
Todea, A. M., Beckmann, S., Kaminski, H., Bard, D., Bau, S., Clavaguera, S., Dahmann, D., Dozol, H., Dziurowitz, N., Elihn, K., Fierz, M., Lidén, G., Meyer-Plath, A., Monz, C., Neumann, V., Pelzer, J., Simonow, B. K., Thali, P., Tuinman, I., van der Vleuten, A., Vroomen, H., and Asbach, C.: Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment, Science of the Total Environment, 605–606, 929–945, https://doi.org/10.1016/j.scitotenv.2017.06.041, 2017. a, b
Turnock, S., Butt, E., Richardson, T., Mann, G., Reddington, C., Forster, P., Haywood, J., Crippa, M., Janssens-Maenhout, G., Johnson, C., Bellouin, N., Carslaw, K., and Spracklen, D.: The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Environmental Research Letters, 11, https://doi.org/10.1088/1748-9326/11/2/024010, 2016. a
Vesisenaho, K., Kuuluvainen, H., Mäkinen, U.-V., Olin, M., and Karjalainen, P.: Data related to the paper: Decay phase aerosol dynamics of an indoor particle source has a significant role in exposure analysis, Zenodo [data set], https://doi.org/10.5281/zenodo.15471503, 2025. a, b
Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., and Mickley, L. J.: Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem, Environmental Research, 195, https://doi.org/10.1016/j.envres.2021.110754, 2021. a
Wallace, L.: Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations, and source strengths, Aerosol Science and Technology, 40, 348–360, https://doi.org/10.1080/02786820600612250, 2006. a, b
Wallace, L. and Ott, W.: Personal exposure to ultrafine particles, Journal of Exposure Science and Environmental Epidemiology, 21, 20–30, https://doi.org/10.1038/jes.2009.59, 2011. a, b, c, d
Whitby, E. R. and McMurry, P. H.: Modal aerosol dynamics modeling, Aerosol Science and Technology, 27, 673–688, https://doi.org/10.1080/02786829708965504, 1997. a
Yeung, L. and To, W.: Size distributions of the aerosols emitted from commercial cooking processes, Indoor and Built Environment, 17, 220–229, https://doi.org/10.1177/1420326X08092043, 2008. a
Yoon, H., Seo, J., Yoo, S. K., Kim, P. J., Park, J., Choe, Y., and Yang, W.: Updated general exposure factors for risk assessment in the Korean population, Journal of exposure science & environmental epidemiology, 33, 1013–1020, https://doi.org/10.1038/s41370-022-00437-6, 2022. a
Zukowska, D., Rojas, G., Burman, E., Guyot, G., Bocanegra-Yanez, M. d. C., Laverge, J., Cao, G., and Kolarik, J.: Ventilation in low energy residences–a survey on code requirements, implementation barriers and operational challenges from seven European countries, International Journal of Ventilation, 20, 83–102, https://doi.org/10.1080/14733315.2020.1732056, 2021. a
Short summary
This study investigates the decay of particle lung-deposited surface area (LDSA) concentrations following indoor particle emissions, with a focus on cooking activities. Two decay functions were derived and validated using measurement data. Applying the functions, it is shown that from 66.5 to 82.9 % of the exposure to cooking-generated particles occurred during the decay phase following the active cooking event. This highlights both the applicability and importance of the derived decay functions.
This study investigates the decay of particle lung-deposited surface area (LDSA) concentrations...
Altmetrics
Final-revised paper
Preprint