Articles | Volume 3, issue 2
https://doi.org/10.5194/ar-3-461-2025
https://doi.org/10.5194/ar-3-461-2025
Research article
 | 
22 Oct 2025
Research article |  | 22 Oct 2025

Decay-phase aerosol dynamics of an indoor particle source have a significant role in exposure analysis

Kuisma Vesisenaho, Heino Kuuluvainen, Ukko-Ville Mäkinen, Miska Olin, and Panu Karjalainen

Related authors

The role of fuel and environmental conditions on the amount and composition of primary, fresh, and aged aerosol emissions originating from diesel- and gasoline-operated auxiliary heaters of passenger cars
Henri Oikarinen, Anni Hartikainen, Pauli Simonen, Miska Olin, Ukko-Ville Mäkinen, Petteri Marjanen, Laura Salo, Ville Silvonen, Sampsa Martikainen, Jussi Hoivala, Mika Ihalainen, Pasi Miettinen, Pasi Yli-Pirilä, Olli Sippula, Santtu Mikkonen, and Panu Karjalainen
Atmos. Meas. Tech., 18, 4271–4292, https://doi.org/10.5194/amt-18-4271-2025,https://doi.org/10.5194/amt-18-4271-2025, 2025
Short summary
Primary particle emissions and atmospheric secondary aerosol formation potential from a large-scale wood pellet-fired heating plant
Fanni Mylläri, Niina Kuittinen, Minna Aurela, Teemu Lepistö, Paavo Heikkilä, Laura Salo, Lassi Markkula, Panu Karjalainen, Joel Kuula, Sami Harni, Katriina Kyllönen, Satu Similä, Katriina Jalkanen, Joakim Autio, Marko Palonen, Jouni Valtatie, Anna Häyrinen, Hilkka Timonen, and Topi Rönkkö
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-14,https://doi.org/10.5194/ar-2025-14, 2025
Preprint under review for AR
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024,https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023,https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary

Cited articles

Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review, Atmospheric Environment, 71, 260–294, https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013. a, b
Ahmed, T., Kumar, P., and Mottet, L.: Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality, Renewable and Sustainable Energy Reviews, 138, 110669, https://doi.org/10.1016/j.rser.2020.110669, 2021. a
Bhangar, S., Mullen, N., Hering, S., Kreisberg, N., and Nazaroff, W. W.: Ultrafine particle concentrations and exposures in seven residences in northern California, Indoor Air, 21, 132–144, https://doi.org/10.1111/j.1600-0668.2010.00689.x, 2011. a
Buonanno, G., Morawska, L., and Stabile, L.: Particle emission factors during cooking activities, Atmospheric Environment, 43, 3235–3242, https://doi.org/10.1016/j.atmosenv.2009.03.044, 2009. a, b, c, d
Buonanno, G., Giovinco, G., Morawska, L., and Stabile, L.: Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy, Atmospheric Environment, 45, 6216–6224, https://doi.org/10.1016/j.atmosenv.2011.07.066, 2011. a
Download
Short summary
This study investigates the decay of particle lung-deposited surface area (LDSA) concentrations following indoor particle emissions, with a focus on cooking activities. Two decay functions were derived and validated using measurement data. Applying the functions, it is shown that from 66.5 to 82.9 % of the exposure to cooking-generated particles occurred during the decay phase following the active cooking event. This highlights both the applicability and importance of the derived decay functions.
Share
Altmetrics
Final-revised paper
Preprint