Articles | Volume 2, issue 2
https://doi.org/10.5194/ar-2-235-2024
https://doi.org/10.5194/ar-2-235-2024
Research article
 | 
22 Jul 2024
Research article |  | 22 Jul 2024

Vertical concentrations gradients and transport of airborne microplastics in wind tunnel experiments

Eike Maximilian Esders, Christoph Georgi, Wolfgang Babel, Andreas Held, and Christoph Karl Thomas

Related authors

Is transport of microplastics different from mineral particles? Idealized wind tunnel studies on polyethylene microspheres
Eike Maximilian Esders, Sebastian Sittl, Inka Krammel, Wolfgang Babel, Georg Papastavrou, and Christoph Karl Thomas
Atmos. Chem. Phys., 23, 15835–15851, https://doi.org/10.5194/acp-23-15835-2023,https://doi.org/10.5194/acp-23-15835-2023, 2023
Short summary

Related subject area

Fundamental Aerosol Research (FAR)
Cluster-to-particle transition in atmospheric nanoclusters
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024,https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
A cluster-of-functional-groups approach for studying organic enhanced atmospheric cluster formation
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024,https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Photocatalytic chloride-to-chlorine conversion by ionic iron in aqueous aerosols: a combined experimental, quantum chemical, and chemical equilibrium model study
Marie K. Mikkelsen, Jesper B. Liisberg, Maarten M. J. W. van Herpen, Kurt V. Mikkelsen, and Matthew S. Johnson
Aerosol Research, 2, 31–47, https://doi.org/10.5194/ar-2-31-2024,https://doi.org/10.5194/ar-2-31-2024, 2024
Short summary

Cited articles

Allen, D., Allen, S., Abbasi, S., Baker, A., Bergmann, M., Brahney, J., Butler, T., Duce, R. A., Eckhardt, S., Evangeliou, N., Jickells, T., Kanakidou, M., Kershaw, P., Laj, P., Levermore, J., Li, D., Liss, P., Liu, K., Mahowald, N., Masque, P., Materić, D., Mayes, A. G., McGinnity, P., Osvath, I., Prather, K. A., Prospero, J. M., Revell, L. E., Sander, S. G., Shim, W. J., Slade, J., Stein, A., Tarasova, O., and Wright, S.: Microplastics and nanoplastics in the marine-atmosphere environment, Nature Reviews Earth & Environment, 3, 393–405, https://doi.org/10.1038/s43017-022-00292-x, 2022. a
Bergmann, M., Collard, F., Fabres, J., Gabrielsen, G. W., Provencher, J. F., Rochman, C. M., van Sebille, E., and Tekman, M. B.: Plastic pollution in the Arctic, Nature Reviews Earth & Environment, 3, 323–337, https://doi.org/10.1038/s43017-022-00279-8, 2022. a
Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., and Sukumaran, S.: Plastic rain in protected areas of the United States, Science, 368, 1257–1260, https://doi.org/10.1126/science.aaz5819, 2020. a, b
Bullard, J. E., Ockelford, A., O'Brien, P., and McKenna Neuman, C.: Preferential transport of microplastics by wind, Atmos. Environ., 245, 118038, https://doi.org/10.1016/j.atmosenv.2020.118038, 2021. a, b
Chen, X., Huang, G., and Dionysiou, D. D.: Editorial Overview: Emissions of Microplastics and Their Control in the Environment, J. Environ. Eng., 147, 01821002, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001897, 2021. a
Download
Short summary
Our study explores how tiny plastic particles, known as microplastics (MPs), move through the air. We focus on their journey in a wind tunnel to mimic atmospheric transport. Depending on the air speed and the height of their release, they move downwards or upwards. These results suggest that MPs behave like mineral particles and that we can expect MPs to accumulate where natural dust also accumulates in the environment, offering insights for predicting the spread and impacts of MPs.
Altmetrics
Final-revised paper
Preprint