Articles | Volume 3, issue 1
https://doi.org/10.5194/ar-3-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-3-185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of soot precursor molecules during inception by acetylene pyrolysis using reactive molecular dynamics
Anindya Ganguly
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
Khaled Mosharraf Mukut
Department of Mechanical Engineering, Marquette University, Milwaukee, WI, USA
Somesh Roy
Department of Mechanical Engineering, Marquette University, Milwaukee, WI, USA
Georgios Kelesidis
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Eirini Goudeli
CORRESPONDING AUTHOR
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
Related authors
No articles found.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Related subject area
Fundamental Aerosol Research (FAR)
The impact of unimolecular reactions on acyl peroxy radical initiated isoprene oxidation
Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles
Base synergy in freshly nucleated particles
Particle deliquescence in a turbulent humidity field
Cluster-to-particle transition in atmospheric nanoclusters
Vertical concentrations gradients and transport of airborne microplastics in wind tunnel experiments
A cluster-of-functional-groups approach for studying organic enhanced atmospheric cluster formation
Photocatalytic chloride-to-chlorine conversion by ionic iron in aqueous aerosols: a combined experimental, quantum chemical, and chemical equilibrium model study
Ida Karppinen, Dominika Pasik, Emelda Ahongshangbam, and Nanna Myllys
Aerosol Research, 3, 175–183, https://doi.org/10.5194/ar-3-175-2025, https://doi.org/10.5194/ar-3-175-2025, 2025
Short summary
Short summary
Acyl peroxy radicals can act as atmospheric oxidants of unsaturated hydrocarbons if their 1) unimolecular reactions are slow and 2) bimolecular accretion reactions are fast. Using theoretical tools, we show which acyl peroxy radicals should be considered oxidants in the atmosphere.
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025, https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Short summary
Using quantum chemical methods, we studied the uptake of first-generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic–organic interactions during co-condensation onto the particle contribute to the growth.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025, https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Short summary
Aerosol formation is an important process for our global climate. However, there are high uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular clusters composed of sulfuric acid (SA), ammonia (AM), and dimethylamine (DMA). We find that mixed SA–AM–DMA systems cluster more efficiently for freshly nucleated particles compared to pure SA–AM and SA–DMA systems.
Dennis Niedermeier, Rasmus Hoffmann, Silvio Schmalfuss, Wiebke Frey, Fabian Senf, Olaf Hellmuth, Mira Pöhlker, and Frank Stratmann
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-41, https://doi.org/10.5194/ar-2024-41, 2025
Revised manuscript accepted for AR
Short summary
Short summary
This study examines the deliquescence behavior of NaCl particles in a turbulent humidity field using the wind tunnel LACIS-T. The results show turbulent relative humidity (RH) fluctuations affect the number of deliquesced particles, depending on mean RH, strength of humidity fluctuations, and particle residence time. It turns out that, in addition to the mean RH, it is essential to consider humidity fluctuations and particle history when determining the phase state of the deliquescent particles.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024, https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
Short summary
The exact point at which a given assembly of molecules represents an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods, here we explore a cluster-to-particle transition point. Based on our results, we deduce a property-based criterion for defining freshly nucleated particles (FNPs) that act as a boundary between discrete cluster configurations and bulk particles.
Eike Maximilian Esders, Christoph Georgi, Wolfgang Babel, Andreas Held, and Christoph Karl Thomas
Aerosol Research, 2, 235–243, https://doi.org/10.5194/ar-2-235-2024, https://doi.org/10.5194/ar-2-235-2024, 2024
Short summary
Short summary
Our study explores how tiny plastic particles, known as microplastics (MPs), move through the air. We focus on their journey in a wind tunnel to mimic atmospheric transport. Depending on the air speed and the height of their release, they move downwards or upwards. These results suggest that MPs behave like mineral particles and that we can expect MPs to accumulate where natural dust also accumulates in the environment, offering insights for predicting the spread and impacts of MPs.
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024, https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Short summary
Aerosol formation is an important process for our global climate. While inorganic species have been shown to be important for aerosol formation, there remains a large gap in our knowledge about the exact involvement of organics. We present a new quantum chemical procedure for screening relevant organics that for the first time allows us to obtain direct molecular-level insight into the organics involved in aerosol formation.
Marie K. Mikkelsen, Jesper B. Liisberg, Maarten M. J. W. van Herpen, Kurt V. Mikkelsen, and Matthew S. Johnson
Aerosol Research, 2, 31–47, https://doi.org/10.5194/ar-2-31-2024, https://doi.org/10.5194/ar-2-31-2024, 2024
Short summary
Short summary
We analyze the mechanism whereby sunlight and iron catalyze the production of chlorine from chloride in sea spray aerosol. This process occurs naturally over the North Atlantic and is the single most important source of chlorine. We investigate the mechanism using quantum chemistry, laboratory experiments, and aqueous chemistry modelling. The process will change depending on competing ions, light distribution, acidity, and chloride concentration.
Cited articles
Agafonov, G. L., Bilera, I. V., Vlasov, P. A., Kolbanovskii, Y. A., Smirnov, V. N., and Tereza, A. M.: Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves, Kinet. Catal., 56, 12–30, https://doi.org/10.1134/S0023158415010012, 2015.
Aghsaee, M., Dürrstein, S. H., Herzler, J., Böhm, H., Fikri, M., and Schulz, C.: Influence of molecular hydrogen on acetylene pyrolysis: Experiment and modeling, Combust. Flame, 161, 2263–2269, https://doi.org/10.1016/j.combustflame.2014.03.012, 2014.
Alfè, M., Apicella, B., Barbella, R., Rouzaud, J. N., Tregrossi, A., and Ciajolo, A.: Structure–property relationship in nanostructures of young and mature soot in premixed flames, P. Combust. Inst., 32, 697–704, https://doi.org/10.1016/j.proci.2008.06.193, 2009.
Alfè, M., Apicella, B., Rouzaud, J. N., Tregrossi, A., and Ciajolo, A.: The effect of temperature on soot properties in premixed methane flames, Combust. Flame, 157, 1959–1965, https://doi.org/10.1016/j.combustflame.2010.02.007, 2010.
Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., Van Dingenen, R., Vignati, E., Emberson, L., Z, M. N., Jason, W. J., Williams, M., Demkine, V., Kevin, H. W., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls, Environ. Health Persp., 120, 831–839, https://doi.org/10.1289/ehp.1104301, 2012.
Appel, J., Bockhorn, H., and Frenklach, M.: Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame, 121, 122–136, https://doi.org/10.1016/S0010-2180(99)00135-2, 2000.
Arvelos, S., Abrahão, O., and Eponina Hori, C.: ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone, J. Anal. Appl. Pyrol., 141, 104620, https://doi.org/10.1016/j.jaap.2019.05.009, 2019.
Bergwerf, H.: MolView: an attempt to get the cloud into chemistry classrooms, DivCHED CCCE: Committee on Computers in Chemical Education, 9, 1–9, 2015.
Billups, W. E. and Haley, M. M.: Spiropentadiene, J. Am. Chem. Soc., 113, 5084–5085, https://doi.org/10.1021/ja00013a067, 1991.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Bradford, W. F., Fitzwater, S., and Bartell, L. S.: Molecular structure of n-butane: calculation of vibrational shrinkages and an electron diffraction re-investigation, J. Mol. Struct., 38, 185–194, https://doi.org/10.1016/0022-2860(77)87091-9, 1977.
Castro-Marcano, F., Kamat, A. M., Russo, M. F., van Duin, A. C. T., and Mathews, J. P.: Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, Combust. Flame, 159, 1272–1285, https://doi.org/10.1016/j.combustflame.2011.10.022, 2012.
Chenoweth, K., van Duin, A. C. T., and Goddard, W. A.: ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation, The J. Phys. Chem. A, 112, 1040–1053, https://doi.org/10.1021/jp709896w, 2008.
Chenoweth, K., van Duin, A. C. T., Dasgupta, S., and Goddard Iii, W. A.: Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel, J. Phys. Chem. A, 113, 1740–1746, https://doi.org/10.1021/jp8081479, 2009.
Commodo, M., Kaiser, K., De Falco, G., Minutolo, P., Schulz, F., D'Anna, A., and Gross, L.: On the early stages of soot formation: Molecular structure elucidation by high-resolution atomic force microscopy, Combust. Flame, 205, 154–164, https://doi.org/10.1016/j.combustflame.2019.03.042, 2019.
Dewa, K., Ono, K., Watanabe, A., Takahashi, K., Matsukawa, Y., Saito, Y., Matsushita, Y., Aoki, H., Era, K., Aoki, T., and Yamaguchi, T.: Evolution of size distribution and morphology of carbon nanoparticles during ethylene pyrolysis, Combust. Flame, 163, 115–121, https://doi.org/10.1016/j.combustflame.2015.09.007, 2016.
Dillstrom, T. and Violi, A.: The effect of reaction mechanisms on the formation of soot precursors in flames, Combust. Theor. Model., 21, 23–34, https://doi.org/10.1080/13647830.2016.1211741, 2017.
Döntgen, M., Schmalz, F., Kopp, W. A., Kröger, L. C., and Leonhard, K.: Automated Chemical Kinetic Modeling via Hybrid Reactive Molecular Dynamics and Quantum Chemistry Simulations, J. Chem. Inf. Model., 58, 1343–1355, https://doi.org/10.1021/acs.jcim.8b00078, 2018.
Döntgen, M., Przybylski-Freund, M.-D., Kröger, L. C., Kopp, W. A., Ismail, A. E., and Leonhard, K.: Automated Discovery of Reaction Pathways, Rate Constants, and Transition States Using Reactive Molecular Dynamics Simulations, J. Chem. Theory Comput., 11, 2517–2524, https://doi.org/10.1021/acs.jctc.5b00201, 2015 (code available at: https://github.com/yiming-xu/LAMMPS_Simulation/tree/master/ChemTraYzer_2.0/py3, last access: February 2025).
Drakon, A. V., Eremin, A. V., Gurentsov, E. V., Mikheyeva, E. Y., and Kolotushkin, R. N.: Optical properties and structure of acetylene flame soot, Appl. Phys. B, 127, 81, https://doi.org/10.1007/s00340-021-07623-8, 2021.
Emri, J. and Lente, G.: Use of an electron equivalent relationship between bond length and bond order to study chemical bonding. Part II. A study of bond orders, bond lengths and aromaticity in polycyclic aromatic hydrocarbons, J. Mol. Struc.-THEOCHEM, 671, 211–219, https://doi.org/10.1016/j.theochem.2003.11.002, 2004.
Evans, D. J. and Holian, B. L.: The Nose–Hoover thermostat, J. Chem. Phys., 83, 4069–4074, https://doi.org/10.1063/1.449071, 1985.
Fakharnezhad, A., Saad, D. M., Kelesidis, G. A., and Goudeli, E.: Nucleation Rate of Soot by n-Heptane Pyrolysis, Aerosol Sci. Tech., in press, https://doi.org/10.1080/02786826.2025.2480625, 2025.
Fantuzzi, F., Baptista, L., Rocha, A. B., and da Silveira, E. F.: Theoretical and experimental investigation on the stability of C H− and C H clusters, Chem. Phys., 410, 109–117, https://doi.org/10.1016/j.chemphys.2012.11.010, 2013.
Faravelli, T., Goldaniga, A., and Ranzi, E.: The kinetic modeling of soot precursors in ethylene flames, Symposium (International) on Combustion, 27, 1489–1495, https://doi.org/10.1016/S0082-0784(98)80556-0, 1998.
Fawcett, A.: Recent advances in the chemistry of bicyclo- and 1-azabicyclo[1.1.0]butanes, Pure Appl. Chem., 92, 751–765, https://doi.org/10.1515/pac-2019-1007, 2020.
Frenklach, M.: Reaction mechanism of soot formation in flames, Phys. Chem. Chem. Phys., 4, 2028–2037, https://doi.org/10.1039/B110045A, 2002.
Frenklach, M. and Wang, H.: Detailed modeling of soot particle nucleation and growth, Symposium (International) on Combustion, 23, 1559–1566, https://doi.org/10.1016/S0082-0784(06)80426-1, 1991.
Frenklach, M. and Wang, H.: Detailed Mechanism and Modeling of Soot Particle Formation, in: Soot Formation in Combustion: Mechanisms and Models, edited by: Bockhorn, H., Springer Berlin Heidelberg, Berlin, Heidelberg, 59, 165–192, https://doi.org/10.1007/978-3-642-85167-4_10, 1994.
Frenklach, M., Taki, S., Durgaprasad, M. B., and Matula, R. A.: Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene, Combust. Flame, 54, 81–101, https://doi.org/10.1016/0010-2180(83)90024-X, 1983.
Fulcheri, L. and Schwob, Y.: From methane to hydrogen, carbon black and water, Int. J. Hydrogen Energ., 20, 197–202, https://doi.org/10.1016/0360-3199(94)E0022-Q, 1995.
Ganguly, A.: Investigation of soot precursor molecules during inception by acetylene pyrolysis using reactive molecular dynamics, Version v1, Zenodo [data set], https://doi.org/10.5281/zenodo.15162017, 2025.
Gao, H. and Tang, H.: Temperature Effect on Formation of Polycyclic Aromatic Hydrocarbons in Acetylene Pyrolysis, ChemistrySelect, 7, e202201893, https://doi.org/10.1002/slct.202201893, 2022.
Giannadaki, D., Lelieveld, J., and Pozzer, A.: Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year, Environmental Health, 15, 88, https://doi.org/10.1186/s12940-016-0170-8, 2016.
Goudeli, E.: Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics, Curr. Opin. Chem. Eng., 23, 155–163, https://doi.org/10.1016/j.coche.2019.04.001, 2019.
Güney, M., Eşsiz, S., Daştan, A., Balci, M., De Lucchi, O., Şahin, E., and Fabris, F.: Stereoconvergent Generation of a Contrasteric syn-Bicyclopropylidene (=syn-Cyclopropylidenecyclopropane) by Stille-Like Coupling, Helv. Chim. Acta, 96, 941–950, https://doi.org/10.1002/hlca.201200291, 2013.
Han, S., Li, X., Nie, F., Zheng, M., Liu, X., and Guo, L.: Revealing the Initial Chemistry of Soot Nanoparticle Formation by ReaxFF Molecular Dynamics Simulations, Energ. Fuels, 31, 8434–8444, https://doi.org/10.1021/acs.energyfuels.7b01194, 2017.
Hermann, M. and Frenking, G.: The Chemical Bond in C2, Chem.-Eur. J., 22, 4100–4108, https://doi.org/10.1002/chem.201503762, 2016.
Hou, D., Pascazio, L., Martin, J., Zhou, Y., Kraft, M., and You, X.: On the reactive coagulation of incipient soot nanoparticles, J. Aerosol Sci., 159, 105866, https://doi.org/10.1016/j.jaerosci.2021.105866, 2022.
Houston Miller, J., Smyth, K. C., and Mallard, W. G.: Calculations of the dimerization of aromatic hydrocarbons: Implications for soot formation, Symposium (International) on Combustion, 20, 1139–1147, https://doi.org/10.1016/S0082-0784(85)80604-4, 1985.
Humphrey, W., Dalke, A., and Schulten, K.: VMD: visual molecular dynamics, J. Mol. Graphics, 14, 33–38, https://doi.org/10.1016/0263-7855(96)00018-5, 1996.
Iijima, T.: Molecular Structure of Propane, B. Chem. Soc. Jpn., 45, 1291–1294, https://doi.org/10.1246/bcsj.45.1291, 1972.
Indarto, A.: Soot Growth Mechanisms from Polyynes, Environ. Eng. Sci., 26, 1685–1691, https://doi.org/10.1089/ees.2007.0325, 2008.
Irimiea, C., Faccinetto, A., Mercier, X., Ortega, I.-K., Nuns, N., Therssen, E., Desgroux, P., and Focsa, C.: Unveiling trends in soot nucleation and growth: When secondary ion mass spectrometry meets statistical analysis, Carbon, 144, 815–830, https://doi.org/10.1016/j.carbon.2018.12.015, 2019.
Jacobson, R. S., Korte, A. R., Vertes, A., and Miller, J. H.: The Molecular Composition of Soot, Angew. Chem. Int. Edit., 59, 4484–4490, https://doi.org/10.1002/anie.201914115, 2020.
Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R., and Michelsen, H. A.: Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth, Science, 361, 997–1000, https://doi.org/10.1126/science.aat3417, 2018.
Johansson, K. O., Dillstrom, T., Elvati, P., Campbell, M. F., Schrader, P. E., Popolan-Vaida, D. M., Richards-Henderson, N. K., Wilson, K. R., Violi, A., and Michelsen, H. A.: Radical–radical reactions, pyrene nucleation, and incipient soot formation in combustion, P. Combust. Inst., 36, 799–806, https://doi.org/10.1016/j.proci.2016.07.130, 2017.
Kazakov, A. and Frenklach, M.: Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames, Combust. Flame, 114, 484–501, https://doi.org/10.1016/S0010-2180(97)00322-2, 1998.
Kelesidis, G. A. and Goudeli, E.: Self-preserving size distribution and collision frequency of flame-made nanoparticles in the transition regime, P. Combust. Inst., 38, 1233–1240, https://doi.org/10.1016/j.proci.2020.07.147, 2021.
Kelesidis, G. A., Goudeli, E., and Pratsinis, S. E.: Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation, P. Combust. Inst., 36, 29–50, https://doi.org/10.1016/j.proci.2016.08.078, 2017a.
Kelesidis, G. A., Goudeli, E., and Pratsinis, S. E.: Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth, Carbon, 121, 527–535, https://doi.org/10.1016/j.carbon.2017.06.004, 2017b.
Kiefer, J. H., Sidhu, S. S., Kern, R. D., Xie, K., Chen, H., and Harding, L. B.: The Homogeneous Pyrolysis of Acetylene II: The High Temperature Radical Chain Mechanism, Combust. Sci. Technol., 82, 101–130, https://doi.org/10.1080/00102209208951815, 1992.
Kim, J. and Ihee, H.: Theoretical study on the reaction of butadiynyl radical (C4H) with ethylene (C2H4) to form C6H4 and H, Int. J. Quantum Chem., 112, 1913–1925, https://doi.org/10.1002/qua.23147, 2012.
Krep, L., Roy, I. S., Kopp, W., Schmalz, F., Huang, C., and Leonhard, K.: Efficient Reaction Space Exploration with ChemTraYzer-TAD, J. Chem. Inf. Model., 62, 890–902, https://doi.org/10.1021/acs.jcim.1c01197, 2022.
Lammertsma, K. and Ohwada, T.: Three-Center, Two-Electron Systems. Origin of the Tilting of Their Substituents, J. Am. Chem. Soc., 118, 7247–7254, https://doi.org/10.1021/ja960004x, 1996.
Langer, R., Mao, Q., and Pitsch, H.: A detailed kinetic model for aromatics formation from small hydrocarbon and gasoline surrogate fuel combustion, Combust. Flame, 258, 112574, https://doi.org/10.1016/j.combustflame.2022.112574, 2023.
Li, P., Zhang, X., and Shi, M.: Recent developments in cyclopropene chemistry, Chem. Commun., 56, 5457–5471, https://doi.org/10.1039/D0CC01612H, 2020.
Lide, D. R. and Christensen, D.: Molecular Structure of Propylene, J. Chem. Phys., 35, 1374–1378, https://doi.org/10.1063/1.1732055, 1961.
Lieske, L.-A., Commodo, M., Martin, J. W., Kaiser, K., Benekou, V., Minutolo, P., D'Anna, A., and Gross, L.: Portraits of Soot Molecules Reveal Pathways to Large Aromatics, Five-/Seven-Membered Rings, and Inception through π-Radical Localization, ACS Nano, 17, 13563–13574, https://doi.org/10.1021/acsnano.3c02194, 2023.
Liu, L., Xu, H., Zhu, Q., Ren, H., and Li, X.: Soot formation of n-decane pyrolysis: A mechanistic view from ReaxFF molecular dynamics simulation, Chem. Phys. Lett., 760, 137983, https://doi.org/10.1016/j.cplett.2020.137983, 2020.
Liu, M., Chu, T.-C., Jocher, A., Smith, M. C., Lengyel, I., and Green, W. H.: Predicting polycyclic aromatic hydrocarbon formation with an automatically generated mechanism for acetylene pyrolysis, Int. J. Chem. Kinet., 53, 27–42, https://doi.org/10.1002/kin.21421, 2021.
Lu, Y.-H., Li, K., and Lu, Y.-W.: Microwave-assisted direct synthesis of butene from high-selectivity methane, Roy. Soc. Open Sci., 4, 171367, https://doi.org/10.1098/rsos.171367, 2017.
Lümmen, N.: Aggregation of carbon in an atmosphere of molecular hydrogen investigated by ReaxFF-molecular dynamics simulations, Comp. Mater. Sci., 49, 243–252, https://doi.org/10.1016/j.commatsci.2010.04.046, 2010.
Mao, Q., van Duin, A. C. T., and Luo, K. H.: Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study, Carbon, 121, 380–388, https://doi.org/10.1016/j.carbon.2017.06.009, 2017.
Maricq, M. M.: Coagulation dynamics of fractal-like soot aggregates, J. Aerosol Sci., 38, 141–156, https://doi.org/10.1016/j.jaerosci.2006.11.004, 2007.
Maricq, M. M.: Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust, Aerosol Sci. Tech., 48, 620–629, https://doi.org/10.1080/02786826.2014.904961, 2014.
Martin, J. W., Pascazio, L., Menon, A., Akroyd, J., Kaiser, K., Schulz, F., Commodo, M., D'Anna, A., Gross, L., and Kraft, M.: π-Diradical Aromatic Soot Precursors in Flames, J. Am. Chem. Soc., 143, 12212–12219, https://doi.org/10.1021/jacs.1c05030, 2021.
Mei, J., Wang, M., You, X., and Law, C. K.: Quantitative measurement of particle size distributions of carbonaceous nanoparticles during ethylene pyrolysis in a laminar flow reactor, Combust. Flame, 200, 15–22, https://doi.org/10.1016/j.combustflame.2018.11.010, 2019.
Michelsen, H. A., Colket, M. B., Bengtsson, P.-E., D'Anna, A., Desgroux, P., Haynes, B. S., Miller, J. H., Nathan, G. J., Pitsch, H., and Wang, H.: A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions, ACS Nano, 14, 12470–12490, https://doi.org/10.1021/acsnano.0c06226, 2020.
Miller, J. H.: The kinetics of polynuclear aromatic hydrocarbon agglomeration in flames, Symposium (International) on Combustion, 23, 91–98, https://doi.org/10.1016/S0082-0784(06)80246-8, 1991.
Mukut, K. M., Roy, S., and Goudeli, E.: Molecular arrangement and fringe identification and analysis from molecular dynamics (MAFIA-MD): A tool for analyzing the molecular structures formed during reactive molecular dynamics simulation of hydrocarbons, Comput. Phys. Commun., 276, 108325, https://doi.org/10.1016/j.cpc.2022.108325, 2022 (code available at: https://github.com/comp-comb/MAFIA-MD, last access: February 2025).
Mukut, K. M., Ganguly, A., Goudeli, E., Kelesidis, G. A., and Roy, S. P.: Characterization of Nascent Soot Particles from Acetylene Pyrolysis: A Molecular Modeling Perspective, in: 13th US National Combustion Meeting, Texas, USA, 19–22 March 2023.
Mukut, K. M., Ganguly, A., Goudeli, E., Kelesidis, G. A., and Roy, S. P.: Physical, chemical and morphological evolution of incipient soot obtained from molecular dynamics simulation of acetylene pyrolysis, Fuel, 373, 132197, https://doi.org/10.1016/j.fuel.2024.132197, 2024.
Naseri, A., Kholghy, M. R., Juan, N. A., and Thomson, M. J.: Simulating yield and morphology of carbonaceous nanoparticles during fuel pyrolysis in laminar flow reactors enabled by reactive inception and aromatic adsorption, Combust. Flame, 237, 111721, https://doi.org/10.1016/j.combustflame.2021.111721, 2022.
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R.: Open Babel: An open chemical toolbox, J. Cheminformatics, 3, 33, https://doi.org/10.1186/1758-2946-3-33, 2011.
Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1–19, https://doi.org/10.1006/jcph.1995.1039, 1995 (code available at https://www.lammps.org/download.html, last access: March 2024).
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., and Valero, F. P. J.: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze, J. Geophys. Res.-Atmos., 106, 28371–28398, https://doi.org/10.1029/2001JD900133, 2001.
Rissler, J., Messing, M. E., Malik, A. I., Nilsson, P. T., Nordin, E. Z., Bohgard, M., Sanati, M., and Pagels, J. H.: Effective Density Characterization of Soot Agglomerates from Various Sources and Comparison to Aggregation Theory, Aerosol Sci. Tech., 47, 792–805, https://doi.org/10.1080/02786826.2013.791381, 2013.
Rokstad, O. A., Lindvaag, O. A., and Holmen, A.: Acetylene Pyrolysis in Tubular Reactor, Int. J. Chem. Kinet., 46, 104–115, https://doi.org/10.1002/kin.20830, 2014.
Rom, N., Hirshberg, B., Zeiri, Y., Furman, D., Zybin, S. V., Goddard III, W. A., and Kosloff, R.: First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from ReaxFF Multiscale Reactive Dynamics Simulations, J. Phys. Chem. C, 117, 21043–21054, https://doi.org/10.1021/jp404907b, 2013.
Russo, C., Tregrossi, A., and Ciajolo, A.: Dehydrogenation and growth of soot in premixed flames, P. Combust. Inst., 35, 1803–1809, https://doi.org/10.1016/j.proci.2014.05.024, 2015.
Russo, C., Alfè, M., Rouzaud, J.-N., Stanzione, F., Tregrossi, A., and Ciajolo, A.: Probing structures of soot formed in premixed flames of methane, ethylene and benzene, P. Combust. Inst., 34, 1885–1892, https://doi.org/10.1016/j.proci.2012.06.127, 2013.
Sabbah, H., Biennier, L., Klippenstein, S. J., Sims, I. R., and Rowe, B. R.: Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization, J. Phys. Chem. Lett., 1, 2962–2967, https://doi.org/10.1021/jz101033t, 2010.
Saggese, C., Sánchez, N. E., Frassoldati, A., Cuoci, A., Faravelli, T., Alzueta, M. U., and Ranzi, E.: Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis, Energ. Fuels, 28, 1489–1501, https://doi.org/10.1021/ef402048q, 2014.
Saxe, P. and Schaefer III, H. F.: Can cyclopropyne really be made?, J. Am. Chem. Soc., 102, 3239-3240, https://doi.org/10.1021/ja00529a057, 1980.
Schmalz, F., Kopp, W. A., Goudeli, E., and Leonhard, K.: Reaction path identification and validation from molecular dynamics simulations of hydrocarbon pyrolysis, Int. J. Chem. Kinet., 56, 501–512, https://doi.org/10.1002/kin.21719, 2024.
Schuetz, C. A. and Frenklach, M.: Nucleation of soot: Molecular dynamics simulations of pyrene dimerization, P. Combust. Inst., 29, 2307–2314, https://doi.org/10.1016/S1540-7489(02)80281-4, 2002.
Schulz, F., Commodo, M., Kaiser, K., De Falco, G., Minutolo, P., Meyer, G., D'Anna, A., and Gross, L.: Insights into incipient soot formation by atomic force microscopy, P. Combust. Inst., 37, 885–892, https://doi.org/10.1016/j.proci.2018.06.100, 2019.
Scienomics SAS: MAPS platform 4.3, http://www.scienomics.com/ (last access: 3 April 2025), 2020.
Sharma, A., Mukut, K. M., Roy, S. P., and Goudeli, E.: The coalescence of incipient soot clusters, Carbon, 180, 215–225, https://doi.org/10.1016/j.carbon.2021.04.065, 2021.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol Health Effects from Molecular to Global Scales, Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
Shukla, B. and Koshi, M.: A novel route for PAH growth in HACA based mechanisms, Combust. Flame, 159, 3589–3596, https://doi.org/10.1016/j.combustflame.2012.08.007, 2012.
Skeen, S. A. and Yasutomi, K.: Measuring the soot onset temperature in high-pressure n-dodecane spray pyrolysis, Combust. Flame, 188, 483–487, https://doi.org/10.1016/j.combustflame.2017.09.030, 2018.
Slavinskaya, N., Mirzayeva, A., Whitside, R., Starke, J., Abbasi, M., Auyelkhankyzy, M., and Chernov, V.: A modelling study of acetylene oxidation and pyrolysis, Combust. Flame, 210, 25–42, https://doi.org/10.1016/j.combustflame.2019.08.024, 2019.
Solà, M.: Aromaticity rules, Nat. Chem., 14, 585–590, https://doi.org/10.1038/s41557-022-00961-w, 2022.
Sun, B., Rigopoulos, S., and Liu, A.: Modelling of soot coalescence and aggregation with a two-population balance equation model and a conservative finite volume method, Combust. Flame, 229, 111382, https://doi.org/10.1016/j.combustflame.2021.02.028, 2021.
Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys., 76, 637–649, https://doi.org/10.1063/1.442716, 1982.
Tanzawa, T. and Gardiner, W. C.: Reaction mechanism of the homogeneous thermal decomposition of acetylene, J. Phys. Chem., 84, 236–239, https://doi.org/10.1021/j100440a002, 1980.
Thomson, M. J.: Modeling soot formation in flames and reactors: Recent progress and current challenges, P. Combust. Inst., 39, 805–823, https://doi.org/10.1016/j.proci.2022.07.263, 2023.
Wang, Y. and Chung, S. H.: Soot formation in laminar counterflow flames, Prog. Energ. Combust., 74, 152–238, https://doi.org/10.1016/j.pecs.2019.05.003, 2019.
Wang, Y., Gu, M., Liu, D., and Huang, X.: Soot growth mechanism in C2H2 combustion with H2 addition: A reactive molecular dynamics study, Int. J. Hydrogen Energ., 48, 8696–8706, https://doi.org/10.1016/j.ijhydene.2022.12.001, 2022a.
Wang, Y., Gu, M., Wu, J., Cao, L., Lin, Y., and Huang, X.: Formation of soot particles in methane and ethylene combustion: A reactive molecular dynamics study, Int. J. Hydrogen Energ., 46, 36557–36568, https://doi.org/10.1016/j.ijhydene.2021.08.125, 2021.
Wang, Y., Gu, M., Zhu, Y., Cao, L., Wu, J., Lin, Y., and Huang, X.: Analysis of soot formation of CH4 and C2H4 with H2 addition via ReaxFF molecular dynamics and pyrolysis–gas chromatography/mass spectrometry, J. Energy Inst., 100, 177–188, https://doi.org/10.1016/j.joei.2021.11.007, 2022b.
Yuan, H., Kong, W., Liu, F., and Chen, D.: Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics, Chem. Eng. Sci., 195, 748–757, https://doi.org/10.1016/j.ces.2018.10.020, 2019.
Zádor, J., Fellows, M. D., and Miller, J. A.: Initiation Reactions in Acetylene Pyrolysis, J. Phys. Chem.-A, 121, 4203–4217, https://doi.org/10.1021/acs.jpca.7b03040, 2017.
Zhang, X., Di, N., Xu, L., Chen, H., Shu, X., Wang, Y., and Lin, Y.: Study on the formation process of soot from 2,5-dimethylfuran pyrolysis by ReaxFF molecular dynamics, J. Therm. Anal. Calorim., 148, 9145–9166, https://doi.org/10.1007/s10973-023-12301-2, 2023.
Zhao, J., Lin, Y., Huang, K., Gu, M., Lu, K., Chen, P., Wang, Y., and Zhu, B.: Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics, Fuel, 262, 116677, https://doi.org/10.1016/j.fuel.2019.116677, 2020.
Short summary
The study explores the formation of small soot clusters by precursor molecules at high temperature. Higher temperature speeds up the decomposition of gas molecules, accelerating the formation of cyclic structures decorated by aliphatic chains. This research offers new insights into the early steps of soot formation, which could help develop more informed kinetic models for pyrolysis and combustion processes.
The study explores the formation of small soot clusters by precursor molecules at high...
Altmetrics
Final-revised paper
Preprint