Articles | Volume 2, issue 2
https://doi.org/10.5194/ar-2-343-2024
https://doi.org/10.5194/ar-2-343-2024
Research article
 | 
19 Dec 2024
Research article |  | 19 Dec 2024

Cloud drop activation of insoluble aerosols aided by film-forming surfactants

Ari Laaksonen

Related authors

Global fields of daily accumulation-mode particle number concentrations using in situ observations, reanalysis data and machine learning
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakes K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-18,https://doi.org/10.5194/ar-2025-18, 2025
Preprint under review for AR
Short summary
Prior heterogeneous ice nucleation events increase likelihood of homogeneous freezing during the evolution of synoptic cirrus
Kasper Juurikkala, Christina J. Williamson, Karl D. Froyd, Jonathan Dean-Day, and Ari Laaksonen
EGUsphere, https://doi.org/10.5194/egusphere-2025-163,https://doi.org/10.5194/egusphere-2025-163, 2025
Short summary
Homogeneous ice nucleation in adsorbed water films: A theoretical approach
Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4095,https://doi.org/10.5194/egusphere-2024-4095, 2025
Short summary
Deposition freezing, pore condensation freezing and adsorption: three processes, one description?
Mária Lbadaoui-Darvas, Ari Laaksonen, and Athanasios Nenes
Atmos. Chem. Phys., 23, 10057–10074, https://doi.org/10.5194/acp-23-10057-2023,https://doi.org/10.5194/acp-23-10057-2023, 2023
Short summary
Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022,https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary

Related subject area

Atmospheric Aerosols (AA)
Sources of ultrafine particles at a rural midland site in Switzerland
Lubna Dada, Benjamin T. Brem, Lidia-Marta Amarandi-Netedu, Martine Collaud Coen, Nikolaos Evangeliou, Christoph Hueglin, Nora Nowak, Robin Modini, Martin Steinbacher, and Martin Gysel-Beer
Aerosol Research, 3, 315–336, https://doi.org/10.5194/ar-3-315-2025,https://doi.org/10.5194/ar-3-315-2025, 2025
Short summary
Multi-seasonal measurements of the ground-level atmospheric ice-nucleating particle abundance on the North Slope of Alaska
Aidan D. Pantoya, Stephanie R. Simonsen, Elisabeth Andrews, Ross Burgener, Christopher J. Cox, Gijs de Boer, Bryan D. Thomas, and Naruki Hiranuma
Aerosol Research, 3, 253–270, https://doi.org/10.5194/ar-3-253-2025,https://doi.org/10.5194/ar-3-253-2025, 2025
Short summary
Parameterization of particle formation rates in distinct atmospheric environments
Xinyang Li, Tuomo Nieminen, Rima Baalbaki, Putian Zhou, Pauli Paasonen, Risto Makkonen, Martha Arbayani Zaidan, Nina Sarnela, Chao Yan, Tuija Jokinen, Imre Salma, Máté Vörösmarty, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Lubna Dada
Aerosol Research, 3, 271–291, https://doi.org/10.5194/ar-3-271-2025,https://doi.org/10.5194/ar-3-271-2025, 2025
Short summary
Opinion: Influence of the mean free path of air on atmospheric particle growth
Runlong Cai and Markku Kulmala
Aerosol Research, 3, 231–235, https://doi.org/10.5194/ar-3-231-2025,https://doi.org/10.5194/ar-3-231-2025, 2025
Short summary
Unchanged PM2.5 levels over Europe during COVID-19 were buffered by ammonia
Nikolaos Evangeliou, Ondřej Tichý, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier A. Hauglustaine
Aerosol Research, 3, 155–174, https://doi.org/10.5194/ar-3-155-2025,https://doi.org/10.5194/ar-3-155-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D., Broekhuizen, K., and Pradeep Kumar, P.: Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles, Atmos. Environ., 39, 4767–4778, https://doi.org/10.1016/j.atmosenv.2005.04.029, 2005. a
Bain, A., Ghosh, K., Prisle, N., and Bzdek, B.: Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets, ACS Cent. Sci., 9, 2076–2083, https://doi.org/10.1021/acscentsci.3c00998, 2023. a
Forestieri, S. D., Staudt, S. M., Kuborn, T. M., Faber, K., Ruehl, C. R., Bertram, T. H., and Cappa, C. D.: Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics, Atmos. Chem. Phys., 18, 10985–11005, https://doi.org/10.5194/acp-18-10985-2018, 2018. a
Frenkel, J.: Kinetic Theory of Liquids, Oxford University Press, London, 1946. a
Gaines Jr., G. L.: The thermodynamic equation of state for insoluble monolayers. I. Uncharged films, J. Chem. Phys., 69, 924–930, https://doi.org/10.1063/1.436608, 1978. a, b, c
Download
Short summary
Insoluble aerosol particles such as minerals and black carbon can trigger freezing inside clouds, which leads to rain formation. However, both particle types are relatively poor nuclei for cloud droplets. In this work, theoretical calculations are presented about the ability of surface-tension-reducing compounds to promote cloud drop formation around insoluble aerosols. The calculations indicate that such surfactants can be efficient in “smuggling” insoluble particles into cloud droplets.
Share
Altmetrics
Final-revised paper
Preprint