Articles | Volume 3, issue 1
https://doi.org/10.5194/ar-3-219-2025
https://doi.org/10.5194/ar-3-219-2025
Research article
 | 
29 Apr 2025
Research article |  | 29 Apr 2025

Particle deliquescence in a turbulent humidity field

Dennis Niedermeier, Rasmus Hoffmann, Silvio Schmalfuss, Wiebke Frey, Fabian Senf, Olaf Hellmuth, Mira Pöhlker, and Frank Stratmann

Related authors

Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
Dennis Niedermeier, Jens Voigtländer, Silvio Schmalfuß, Daniel Busch, Jörg Schumacher, Raymond A. Shaw, and Frank Stratmann
Atmos. Meas. Tech., 13, 2015–2033, https://doi.org/10.5194/amt-13-2015-2020,https://doi.org/10.5194/amt-13-2015-2020, 2020
Short summary
Ice nucleation by water-soluble macromolecules
B. G. Pummer, C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, M. Schauperl, M. Tollinger, C. E. Morris, H. Wex, H. Grothe, U. Pöschl, T. Koop, and J. Fröhlich-Nowoisky
Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015,https://doi.org/10.5194/acp-15-4077-2015, 2015
A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015,https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance
H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke, and F. Stratmann
Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015,https://doi.org/10.5194/acp-15-1463-2015, 2015
Short summary

Related subject area

Fundamental Aerosol Research (FAR)
Investigation of soot precursor molecules during inception by acetylene pyrolysis using reactive molecular dynamics
Anindya Ganguly, Khaled Mosharraf Mukut, Somesh Roy, Georgios Kelesidis, and Eirini Goudeli
Aerosol Research, 3, 185–203, https://doi.org/10.5194/ar-3-185-2025,https://doi.org/10.5194/ar-3-185-2025, 2025
Short summary
The impact of unimolecular reactions on acyl peroxy radical initiated isoprene oxidation
Ida Karppinen, Dominika Pasik, Emelda Ahongshangbam, and Nanna Myllys
Aerosol Research, 3, 175–183, https://doi.org/10.5194/ar-3-175-2025,https://doi.org/10.5194/ar-3-175-2025, 2025
Short summary
Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025,https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Base synergy in freshly nucleated particles
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025,https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Cluster-to-particle transition in atmospheric nanoclusters
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024,https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary

Cited articles

Bahadur, R. and Russell, L. M.: Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations, J. Chem. Phys., 129, 094508, https://doi.org/10.1063/1.2971040, 2008. a, b, c, d, e
Baker, M. B., Breidenthal, R. E., Choularton, T. W., and Latham, J.: The effects of turbulent mixing in clouds, J. Atmos. Sci., 41, 299–304, https://doi.org/10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2, 1984. a
Bodenschatz, E., Malinowski, S. P., Shaw, R. A., and Stratmann, F.: Can we understand clouds without turbulence?, Science, 327, 970–971, https://doi.org/10.1126/science.1185138, 2010. a
Cantrell, W., McCrory, C., and Ewing, G. E.: Nucleated deliquescence of salt, J. Chem. Phys., 116, 2116–2120, https://doi.org/10.1063/1.1429924, 2002. a
Chai, X. and Mahesh, K.: Dynamic-equation model for large-eddy simulation of compressible flows, J. Fluid Mech., 699, 385–413, https://doi.org/10.1017/jfm.2012.115, 2012. a
Download
Short summary
This study examines the deliquescence behavior of NaCl particles in a turbulent humidity field using the wind tunnel LACIS-T (Turbulent Leipzig Aerosol Cloud Interaction Simulator). The results show that turbulent relative humidity (RH) fluctuations affect the number of deliquesced particles, depending on the mean RH, strength of humidity fluctuations, and particle residence time. It turns out that, in addition to the mean RH, it is essential to consider humidity fluctuations and particle history when determining the phase state of the deliquescent particles.
Share
Altmetrics
Final-revised paper
Preprint