Articles | Volume 2, issue 1
https://doi.org/10.5194/ar-2-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-2-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of a Partector Pro for atmospheric particle number size distribution and number concentration measurements at an urban background site
Filtration & Aerosol Research Department, Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), 47229 Duisburg, Germany
Ana Maria Todea
Filtration & Aerosol Research Department, Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), 47229 Duisburg, Germany
Heinz Kaminski
Filtration & Aerosol Research Department, Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), 47229 Duisburg, Germany
Related authors
Jia Sun, Wolfram Birmili, Markus Hermann, Thomas Tuch, Kay Weinhold, Maik Merkel, Fabian Rasch, Thomas Müller, Alexander Schladitz, Susanne Bastian, Gunter Löschau, Josef Cyrys, Jianwei Gu, Harald Flentje, Björn Briel, Christoph Asbach, Heinz Kaminski, Ludwig Ries, Ralf Sohmer, Holger Gerwig, Klaus Wirtz, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 7049–7068, https://doi.org/10.5194/acp-20-7049-2020, https://doi.org/10.5194/acp-20-7049-2020, 2020
Short summary
Short summary
To evaluate the effectiveness of emission mitigation policies, we evaluated the trends of the size-resolved particle number concentrations and equivalent black carbon mass concentration at 16 observational sites for various environments in Germany (2009–2018). Overall, significant decrease trends are found for most of the parameters and sites. This study suggests that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales such as in Germany.
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
Jia Sun, Wolfram Birmili, Markus Hermann, Thomas Tuch, Kay Weinhold, Maik Merkel, Fabian Rasch, Thomas Müller, Alexander Schladitz, Susanne Bastian, Gunter Löschau, Josef Cyrys, Jianwei Gu, Harald Flentje, Björn Briel, Christoph Asbach, Heinz Kaminski, Ludwig Ries, Ralf Sohmer, Holger Gerwig, Klaus Wirtz, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 7049–7068, https://doi.org/10.5194/acp-20-7049-2020, https://doi.org/10.5194/acp-20-7049-2020, 2020
Short summary
Short summary
To evaluate the effectiveness of emission mitigation policies, we evaluated the trends of the size-resolved particle number concentrations and equivalent black carbon mass concentration at 16 observational sites for various environments in Germany (2009–2018). Overall, significant decrease trends are found for most of the parameters and sites. This study suggests that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales such as in Germany.
Wolfram Birmili, Kay Weinhold, Fabian Rasch, André Sonntag, Jia Sun, Maik Merkel, Alfred Wiedensohler, Susanne Bastian, Alexander Schladitz, Gunter Löschau, Josef Cyrys, Mike Pitz, Jianwei Gu, Thomas Kusch, Harald Flentje, Ulrich Quass, Heinz Kaminski, Thomas A. J. Kuhlbusch, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Ludwig Ries, Holger Gerwig, Klaus Wirtz, and Markus Fiebig
Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, https://doi.org/10.5194/essd-8-355-2016, 2016
Short summary
Short summary
The German Ultrafine Aerosol Network (GUAN) provides new continuous data on tropospheric aerosol particles including number size distributions and black carbon. The data are equally relevant for atmospheric studies related to both climate-related and health-related issues. The published data underwent uniform measures of quality assurance and control. The data are available free of charge at the World Data Center for Aerosols EBAS data repository.
Related subject area
Aerosol Measurements & Instrumentation (AMI)
Influence of soot aerosol properties on the counting efficiency of instruments used for the periodic technical inspection of diesel vehicles
Direct detection of polycyclic aromatic hydrocarbons on a molecular composition level in summertime ambient aerosol via proton transfer reaction mass spectrometry
Reduced particle composition dependence in condensation particle counters
Performance evaluation of a semivolatile aerosol dichotomous sampler (SADS) for exposure assessment: impact of design issues
Extended aerosol optical depth (AOD) time series analysis in an Alpine valley: a comparative study from 2007 to 2023
A multi-instrumental approach for calibrating real-time mass spectrometers using high-performance liquid chromatography and positive matrix factorization
Opinion: Should high-resolution differential mobility analyzers be used in mainstream aerosol studies?
Pushing nano-aerosol measurements towards a new decade – technical note on the Airmodus particle size magnifier 2.0
A novel measurement system for unattended, in situ characterization of carbonaceous aerosols
Optimized procedure for the determination of alkylamines in airborne particulate matter of anthropized areas
A new working fluid for condensation particle counters for use in sensitive working environments
Tobias Hammer, Diana Roos, Barouch Giechaskiel, Anastasios Melas, and Konstantina Vasilatou
Aerosol Research, 2, 261–270, https://doi.org/10.5194/ar-2-261-2024, https://doi.org/10.5194/ar-2-261-2024, 2024
Short summary
Short summary
More than 35 000 particle counters designed for the periodic technical inspection of diesel engine exhaust have been placed on the European market in the past few years. This work shows that the counting efficiency of these instruments depends on the properties of the test aerosols, even if all of them are combustion-based soot of similar mobility diameter. The aim of this study is to promote harmonisation of measurement procedures in the field of emission control.
Tobias Reinecke, Markus Leiminger, Andreas Klinger, and Markus Müller
Aerosol Research, 2, 225–233, https://doi.org/10.5194/ar-2-225-2024, https://doi.org/10.5194/ar-2-225-2024, 2024
Short summary
Short summary
Condensed particulate polycyclic aromatic hydrocarbons (PAHs) are toxic compounds that may be detrimental to human health, even at low (sub-ng m-3) long-term exposure levels. The CHARON FUSION PTR-TOF 10k is capable of directly detecting PAHs on a chemical composition level at significantly lower mass concentrations. Herein, we report the time series of nine PAHs and identify three associated major sources and physicochemical processes for summertime aerosol in Innsbruck, Austria.
Peter J. Wlasits, Joonas Enroth, Joonas Vanhanen, Aki Pajunoja, Hinrich Grothe, Paul M. Winkler, and Dominik Stolzenburg
Aerosol Research, 2, 199–206, https://doi.org/10.5194/ar-2-199-2024, https://doi.org/10.5194/ar-2-199-2024, 2024
Short summary
Short summary
We highlight that the composition dependence of the counting efficiency of condensation particle counters can be immensely reduced by choice of the working fluid. A butanol- and a propylene glycol-based version of the Airmodus A30 was calibrated using a set of four different seed particles. Our study shows that composition-dependent counting efficiencies almost vanish in the case of the propylene glycol-based CPC. Simulations of supersaturation profiles were used to explain the results.
Noredine Rekeb, Benjamin Sutter, Emmanuel Belut, Evelyne Géhin, and Raymond Olsen
Aerosol Research, 2, 183–198, https://doi.org/10.5194/ar-2-183-2024, https://doi.org/10.5194/ar-2-183-2024, 2024
Short summary
Short summary
This study addresses challenges in semivolatile organic compound (SVOC) aerosol sampling. Despite its promise, experimental evaluations of the semivolatile aerosol dichotomous sampler (SADS) reveal issues with leakiness, assembly repeatability, and significant wall losses for particles larger than 2 µm. Findings suggest the need for improvements in airtightness, nozzle alignment, and assembly repeatability for the SADS to fulfil its theoretical potential in workplace exposure assessments.
Jochen Wagner, Alma Anna Ubele, Verena Schenzinger, and Axel Kreuter
Aerosol Research, 2, 153–159, https://doi.org/10.5194/ar-2-153-2024, https://doi.org/10.5194/ar-2-153-2024, 2024
Short summary
Short summary
In this study, we explored how tiny particles in the air, known as aerosols, have changed over time in two mountainous areas in Austria and Switzerland from 2007 to 2023. By using special instruments that measure sunlight, we tracked these changes and found that the amount of aerosols has been decreasing in both locations. This is important because aerosols can affect both our health and the climate. This work is crucial for understanding air quality trends in mountain environments.
Melinda K. Schueneman, Douglas A. Day, Dongwook Kim, Pedro Campuzano-Jost, Seonsik Yun, Marla P. DeVault, Anna C. Ziola, Paul J. Ziemann, and Jose L. Jimenez
Aerosol Research, 2, 59–76, https://doi.org/10.5194/ar-2-59-2024, https://doi.org/10.5194/ar-2-59-2024, 2024
Short summary
Short summary
Our study presents a novel method for quantifying mass spectrometer responses to molecular species in organic aerosols. Traditional calibrations often fail for complex mixtures like secondary organic aerosol. We combined chromatography with statistical component analysis to improve separation and quantification, achieving promising agreement with direct calibration. Our findings offer a new approach to assess aerosol composition, especially beneficial for complex mixtures.
Juan Fernandez de la Mora
Aerosol Research, 2, 21–30, https://doi.org/10.5194/ar-2-21-2024, https://doi.org/10.5194/ar-2-21-2024, 2024
Short summary
Short summary
Differential mobility analyzers (DMAs) are widely used to measure aerosol size distributions. Here we argue that DMAs operating steadily at unusually high flow rates are not as complex as they appear and could be used with considerable advantage in many measurements currently carried out in conventional DMAs. We hope that the considerations presented will encourage DMA manufacturers to develop high-flow DMAs far more versatile yet comparable in complexity to today’s mainstream instruments.
Juha Sulo, Joonas Enroth, Aki Pajunoja, Joonas Vanhanen, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Aerosol Research, 2, 13–20, https://doi.org/10.5194/ar-2-13-2024, https://doi.org/10.5194/ar-2-13-2024, 2024
Short summary
Short summary
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
Alejandro Keller, Patrick Specht, Peter Steigmeier, and Ernest Weingartner
Aerosol Research, 1, 65–79, https://doi.org/10.5194/ar-1-65-2023, https://doi.org/10.5194/ar-1-65-2023, 2023
Short summary
Short summary
Ultra-fine airborne carbon particles affect climate and health, but measuring them poses many challenges. This paper presents an innovative device called FATCAT that enables unattended and continuous measurement of these particles over extended periods of time. We detail FATCAT's performance, demonstrate its compatibility with established methods and introduce the unique feature of fast thermograms, a novel approach to further understand real-world samples containing carbonaceous particles.
Davide Spolaor, Lidia Soldà, Gianni Formenton, Marco Roverso, Denis Badocco, Sara Bogialli, Fazel A. Monikh, and Andrea Tapparo
Aerosol Research, 1, 29–38, https://doi.org/10.5194/ar-1-29-2023, https://doi.org/10.5194/ar-1-29-2023, 2023
Short summary
Short summary
In remote environments, atmospheric amines are involved in new particle formation processes. In anthropized areas, they readily react to form secondary aerosol. These particles may have relevant environmental (climate) and health effects. Together with instrumental techniques for the on-line determination of these compounds (PTR-MS, AMS), the development of simple methods for their accurate quantification represents a scientific target aimed at by obtaining more significant environmental data.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Jannik Schmitt, Gerhard Steiner, Lothar Keck, Andreas Petzold, and Ulrich Bundke
Aerosol Research, 1, 1–12, https://doi.org/10.5194/ar-1-1-2023, https://doi.org/10.5194/ar-1-1-2023, 2023
Short summary
Short summary
The aerosol number concentration is essential information for aerosol science. A condensation particle counter (CPC) can robustly provide this information. Butanol is often used as a working fluid in a CPC. We could show that dimethyl sulfoxide (DMSO) behaves equivalently to butanol in terms of the instrument`s counting efficiency, cut-off diameter and concentration linearity. We tested this on different aerosols, including sodium chloride, ammonium sulfate and fresh combustion soot.
Cited articles
Agarwal, J.: Continuous flow, single-particle-counting condensation nucleus counter, J. Aerosol Sci., 11, 343–357, https://doi.org/10.1016/0021-8502(80)90042-7, 1980.
Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T., and Pui, D.: Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM), J. Nanopart. Res., 11, 101–109, 2009.
Asbach, C., Kuhlbusch, T., Quass, U., and Kaminski, H.: Zehn Jahre Messungen der Anzahl- und lungendeponierbaren Oberflächenkonzentration ultrafeiner Partikel im städtischen Hintergrund im Ruhrgebiet, Gefahrst. Reinhalt. L., 80, 25–32, 2020.
Asbach, C., Todea, A. M., and Kaminski, H.: Evaluation of a Partector Pro for atmospheric size distribution and number concentration measurements at an urban background site, Zenodo [data set], https://doi.org/10.5281/zenodo.8234790, 2023.
Birmili, W., Rückerl, B., Hoffmann, B., Weinmayer, G., Schins, R., Kuhlbusch, T., Vogel, A., Weber, K., Franck, U., Cyrys, J., and Peters, A.: Ultrafeine Aerosolpartikel in der Außenluft: Perspektiven zur Aufklärung ihrer Gesundheitseffekte, Gefahrst. Reinhalt. L., 11/12, 492–500, 2014.
Birmili, W., Weinhold, K., Nordmann, S., Wiedensohler, A., Spindler, G., Müller, K., Herrmann, H., Gnauk, T., Pitz, M., Cyrys, J., Flentje, H., Nickel, C., Löschau, G., Haase, D., Meinhardt, F., Schwerin, A., Ries, L., and Wirtz, K.: Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN), Gefahrst. Reinhalt. L., 69, 137–145, 2009.
DIN CEN/TS 17434:2020-06: Ambient air – Determination of the particle number size distribution of atmospheric aerosol using a mobility particle size spectrometer (MPSS), German Version, Berlin, Beuth Verlag, https://www.beuth.de/de/vornorm/din-cen-ts-17434/310793696 (last access: 8 January 2024), 2020.
Dockery, D.: Health Effects of Particulate Matter, Ann. Epidemiol., 19, 257–263, https://doi.org/10.1016/j.annepidem.2009.01.018, 2009.
Dockery, D., Pope, A., Xu, X., Spengler, J., Ware, J., Fay, M., Ferris Jr., B. G., and Speizer, F.: An association between air pollution and mortality in six U.S. cities, New Engl. J. Med., 329, 1753–1759, https://doi.org/10.1056/NEJM199312093292401, 1993.
Fierz, M., Houle, C., Steigmeier, P., and Burtscher, H.: Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier, Aerosol Sci. Tech., 45, 1–10, https://doi.org/10.1080/02786826.2010.516283, 2011.
Fierz, M., Meier, D., Steigmeier, P., and Burtscher, H.: Aerosol measurement by induced currents, Aerosol Sci. Tech., 48, 350–357, https://doi.org/10.1080/02786826.2013.875981, 2014.
Fissan, H., Helsper, C., and Thielen, H.: Determination of particle size distributions by means of an electrostatic classifier, J. Aerosol Sci., 14, 354–357, https://doi.org/10.1016/0021-8502(83)90133-7, 1983.
Fissan, H., Neumann, S., Trampe, A., Pui, D., and Shin, W. G.: Rationale and principle of an instrument measuring lung deposited nanoparticle surface area, J. Nanopart. Res., 9, 53–59, https://doi.org/10.1007/978-1-4020-5859-2_6, 2007.
Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., and Herbarth, O.: The effect of particle size on cardiovascular disorders. The smaller the worse, Sci. Total Environ., 409, 4217–4221, https://doi.org/10.1016/j.scitotenv.2011.05.049, 2011.
Fuchs, N. A.: On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofis. Pura Appl., 56, 185–193, https://doi.org/10.1007/BF01993343, 1963.
GBD 2013 Risk Factor Collaborators: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease study 2013, Lancet, 386, 2287–2323, https://doi.org/10.1016/S0140-6736(15)00128-2, 2015.
Hillemann, L.: Messverfahren zur Bestimmung der Partikelanzahlkonzentration in Umweltaerosolen, PhD thesis, Technische Universität Dresden, https://d-nb.info/106815392X/34 (last access: 9 January 2024), 2013.
Hoppel, W.: Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, J. Aerosol Sci., 9, 41–54, https://doi.org/10.1016/0021-8502(78)90062-9, 1978.
Hudda, N. and Fruin, S.: International airport impacts to air quality: Size and related properties of large increases in ultrafine particle number concentration, Environ. Sci. Technol., 50, 3362–3370, https://doi.org/10.1021/acs.est.5b05313, 2016.
Iskandar, A., Andersen, Z., Bonnelykke, K., Ellermann, T., Andersen, K., and Bisgaard, H.: Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children, Thorax, 67, 252–257, https://doi.org/10.1136/thoraxjnl-2011-200324, 2012.
Kaminski, H., Kuhlbusch, T. A., Fissan, H., Ravi, L., Horn, H. G., Han, H. S., Caldow, R., and Asbach, C.: Mathematical Description of Experimentally Determined Charge Distributions of a Unipolar Diffusion Charger, Aerosol Sci. Tech., 46, 708–716, https://doi.org/10.1080/02786826.2012.659360, 2012.
Kulmala, M.: How particles nucleate and grow, Science, 302, 1000–1001, https://doi.org/10.1126/science.1090848, 2003.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R., Norford, L., and Britter, R.: Ultrafine particles in cities, Environ. Int., 66, 1–10, https://doi.org/10.1016/j.envint.2014.01.013, 2014.
Landrigan, P., Fuller, R., Acosta, N., Adeyi, O., Arnold, R., Basu, N., Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haynes, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F., Potocnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P. D, Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., can Schack, O. C. P., Yadama, G. N., Yumkella, K., and Zhong, M.: The Lancet Commission on pollution and health, Lancet, 391, 462–512, https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
LANUV: LANUV Standortdokumentation: DENW038, Mülheim Styrum, Hintergrund, städtisches Gebiet, https://www.lanuv.nrw.de/luqs/messorte/pdf/STYR.pdf (last access: 7 May 2023), 2018.
Lelieveld, J., Evans, J., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., and Münzel, A.: Loss of life expectancy from air pollution compared to other risk factors: a worldiwde perspective, Cardiovasc. Res., 116, 1910–1917, https://doi.org/10.1093/cvr/cvaa025, 2020.
Lenschow, P., Abraham, H., Kutzner, K., Lutz, M., Preuß, J., and Reichenbächer, W.: Some ideas about the sources of PM10, Atmos. Environ., 35, S23–S33, https://doi.org/10.1016/S1352-2310(01)00122-4, 2001.
Levin, M., Gudmundsson, A., Pagels, J., Fierz, M., Molhave, K., Löndahl, J., Jense, K. A., and Koponen, I.: Limitations in the use of unipolar charging for electrical mobility sizing instruments: A study of the Fast Mobility Particle Sizer, Aerosol Sci. Tech., 49, 556–565, https://doi.org/10.1080/02786826.2015.1052039, 2015.
Liu, B. and Pui, D.: A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter, J. Colloid Interf. Sci., 74, 155–171, https://doi.org/10.1016/0021-9797(74)90090-3, 1974.
Liu, B. and Pui, D.: On the performance of the Electrical Aerosol Analyzer, J. Aerosol Sci., 6, 249–264, https://doi.org/10.1016/0021-8502(75)90093-2, 1975.
Marra, J., Voetz, M., and Kiesling, H. J.: Monitor for detecting and assessing exposure to airborne nanoparticles, J. Nanopart. Res., 12, 21–37, https://doi.org/10.1007/s11051-009-9695-x, 2010.
McMurry, P.: The history of condensation nucleus counters, Aerosol Sci. Tech., 33, 297–322, https://doi.org/10.1080/02786820050121512, 2000.
Ministerium für Verkehr des Landes Nordrhein-Westfalen: Jahr 2021: Ergebnisse automatischer Dauerzählstellen an den “Freien Strecken” der Straßen des überörtlichen Verkehrs in Nordrhein Westfalen, https://www.strassen.nrw.de/de/dauerzaehlstellen.html?file=files/a_snrw-2022/dokumente/03_nutzen-und-erleben/02_Verkehr-in-NRW/Statistiken_Dauerzaehlstellen/Jahresberichte/2021-snrw_dauerzaehlung-schlussbericht.pdf&cid=38377 (last access: 7 May 2023), 2022.
Peters, A., Wichmann, H., Tuch, T., Heinrich, J., and Heyder, J.: Respiratory effects are associated with the number of ultrafine particles, Am. J. Resp. Crit. Care, 155, 1376–1383, https://doi.org/10.1164/ajrccm.155.4.9105082, 1997.
Pope III, C. and Dockery, D.: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manage., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006.
prEN 16976:2023: Ambient Air – Determination of the particle number concentration of atmospheric aerosol, German and English version, Beuth Verlag, https://www.beuth.de/de/norm-entwurf/din-en-16976/366659847 (last access: 9 January 2024), 2023.
Qi, C., Chen, D.-R., and Greenberg, P.: Fundamental study of a miniaturized disk-type electrostatic aerosol precipitator for a personal nanoparticle sizer., Aerosol Sci. Tech., 42, 505–512, https://doi.org/10.1080/02786820802203643, 2008.
Rivas, I., Beddows, D., Amato, F., Green, D., Järvi, L., Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez, M., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R., Querol, X., and Kelly, F.: Source apportionment of particle number size distribution in urban background and traffic stations in four European cities, Environ. Int., 135, 105345, https://doi.org/10.1016/j.envint.2019.105345, 2020.
Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., and Peters, A.: Health effects of particulate air pollution: A review of epidemiological evidence, Inhal. Toxicol., 23, 555–592, https://doi.org/10.3109/08958378.2011.593587, 2011.
Stacey, B.: Measurement of ultrafine particles at airports: A review, Atmos. Environ., 198, 463–477, https://doi.org/10.1016/j.atmosenv.2018.10.041, 2019.
Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., , Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., and Wiedensohler, A.: Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations, Atmos. Environ., 202, 256–268, https://doi.org/10.1016/j.atmosenv.2018.12.029, 2019.
Todea, A., Beckmann, S., Kaminski, H., and Asbach, C.: Accuracy of electrical aerosol sensors measuring lung deposited surface area, J. Aerosol Sci., 89, 96–109, https://doi.org/10.1016/j.jaerosci.2015.07.003, 2015.
Todea, A., Beckmann, S., Kaminski, H., Monz, C., Dahmann, D., Neumann, V., Pelzer, J., Simonow, B. K., Thali, P., Tuinman, I., van der Vleuten, A., Vroomen, H., and Asbach, C.: Inter-comparison of personal monitors for nanoparticle exposure at work places and in the environment, Sci. Total Environ., 605–606, 929–945, 2017.
Wang, S. and Flagan, R.: Scanning Electrical Mobility Spectrometer, Aerosol Sci. Tech., 13, 230–240, https://doi.org/10.1080/02786829008959441, 1990.
Wiedensohler, A.: An approximation of the bipolar charge distribution for particles in the submicron size range, J. Aerosol Sci., 19, 387–389; https://doi.org/10.1016/0021-8502(88)90278-9, 1988.
Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Herrmann, M., Merkel, M., Müller, T., Pfeifer, S., Schmidt, A., Tuch, T., Velarde, F., Quincey, P., Seeger, S., and Nowak, A.: Mobility particle size spectrometers: Calibration procedures and measurement uncertainties, Aerosol Sci. Tech., 52, 146–164, 2018.
Short summary
The performance of the handheld Partector Pro has been evaluated against a reference mobility particle size spectrometer (MPSS) for 70 days at an urban background site. The number concentrations measured with the Partector Pro were in excellent and the number size distributions in reasonable agreement with the MPSS. The Partector Pro is thus a promising candidate for the widespread measurement of ultrafine particle concentrations as, for example, requested by WHO, at reasonable costs.
The performance of the handheld Partector Pro has been evaluated against a reference mobility...
Altmetrics
Final-revised paper
Preprint