Articles | Volume 3, issue 1
https://doi.org/10.5194/ar-3-45-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ar-3-45-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance evaluation of four cascade impactors for airborne ultrafine-particle (UFP) collection: the influence of particle type, concentration, mass, and chemical nature
Elisabeth Eckenberger
CORRESPONDING AUTHOR
Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Andreas Mittereder
Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Bayreuth, Germany
Nadine Gawlitta
Comprehensive Molecular Analytics (CMA), Helmholtz Munich, Munich, Germany
Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18059 Rostock, Germany
Jürgen Schnelle-Kreis
Comprehensive Molecular Analytics (CMA), Helmholtz Munich, Munich, Germany
Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18059 Rostock, Germany
Martin Sklorz
Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18059 Rostock, Germany
Dieter Brüggemann
Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Bayreuth, Germany
Ralf Zimmermann
Comprehensive Molecular Analytics (CMA), Helmholtz Munich, Munich, Germany
Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18059 Rostock, Germany
Anke C. Nölscher
CORRESPONDING AUTHOR
Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Related authors
No articles found.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3836, https://doi.org/10.5194/egusphere-2024-3836, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to shift from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Mertens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-27, https://doi.org/10.5194/ar-2024-27, 2024
Revised manuscript under review for AR
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies OP of particles of fresh and aged car and wood burning emissions and how OP changes over time, using novel high time resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per particle mass, especially as they age in the atmosphere. We also calculate emission factors for OP, which could help to improve air pollution policies.
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2587, https://doi.org/10.5194/egusphere-2024-2587, 2024
Short summary
Short summary
Laser desorption of individual particles prior to ionization is the key to reveal their organic composition. The CO2 lasers required are bulky and maintenance-intensive, limiting their use in the field. We have developed a compact solid-state IR laser that is easily aligned with the particle beam. Mass spectra and hit rates are similar to those of the CO2 laser. For combined characterization of organic and inorganic particle compositions both lasers are superior to conventional single UV pulses.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
Atmos. Meas. Tech., 17, 4553–4579, https://doi.org/10.5194/amt-17-4553-2024, https://doi.org/10.5194/amt-17-4553-2024, 2024
Short summary
Short summary
We constructed and characterized a new indoor Teflon atmospheric simulation chamber. We evaluated wall losses, photolysis rates, and secondary reactions of multifunctional photooxidation products in the chamber. To measure these products on-line, we combined chromatographic and mass spectrometric analyses to obtain both isomeric information and a high temporal resolution. For method validation, we studied the formation yields of the main ring-retaining products of toluene.
Eric Schneider, Hendryk Czech, Olga Popovicheva, Marina Chichaeva, Vasily Kobelev, Nikolay Kasimov, Tatiana Minkina, Christopher Paul Rüger, and Ralf Zimmermann
Atmos. Chem. Phys., 24, 553–576, https://doi.org/10.5194/acp-24-553-2024, https://doi.org/10.5194/acp-24-553-2024, 2024
Short summary
Short summary
This study provides insights into the complex chemical composition of long-range-transported wildfire plumes from Yakutia, which underwent different levels of atmospheric processing. With complementary mass spectrometric techniques, we improve our understanding of the chemical processes and atmospheric fate of wildfire plumes. Unprecedented high levels of carbonaceous aerosols crossed the polar circle with implications for the Arctic ecosystem and consequently climate.
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Ralph Dlugi, Martina Berger, Chinmay Mallik, Anywhere Tsokankunku, Michael Zelger, Otávio C. Acevedo, Efstratios Bourtsoukidis, Andreas Hofzumahaus, Jürgen Kesselmeier, Gerhard Kramm, Daniel Marno, Monica Martinez, Anke C. Nölscher, Huug Ouwersloot, Eva Y. Pfannerstill, Franz Rohrer, Sebastian Tauer, Jonathan Williams, Ana-Maria Yáñez-Serrano, Meinrat O. Andreae, Hartwig Harder, and Matthias Sörgel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325, https://doi.org/10.5194/acp-2018-1325, 2019
Publication in ACP not foreseen
Short summary
Short summary
Incomplete mixing (segregation) results in reduced chemical reaction rates compared to those expected from mean values and rate constants. Segregation has been suggested to cause discrepancies between modelled and measured OH radical concentrations. In this work, we summarize the intensities of segregation for the reaction of OH and isoprene for different field and modelling studies and compare those to our results from measurements in a pristine environment.
John N. Crowley, Nicolas Pouvesle, Gavin J. Phillips, Raoul Axinte, Horst Fischer, Tuukka Petäjä, Anke Nölscher, Jonathan Williams, Korbinian Hens, Hartwig Harder, Monica Martinez-Harder, Anna Novelli, Dagmar Kubistin, Birger Bohn, and Jos Lelieveld
Atmos. Chem. Phys., 18, 13457–13479, https://doi.org/10.5194/acp-18-13457-2018, https://doi.org/10.5194/acp-18-13457-2018, 2018
Short summary
Short summary
Simultaneous observations of PAA, PAN and H2O2 are used to provide insight into processes influencing the HOx chemistry of the boreal forest, including two biomass-burning-impacted periods. A significant contribution from photolytic HOx sources was included in a box model analysis to align model predictions with measurements. The model predicts high levels of organic peroxy radicals, also at night-time.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Yudong Yang, Min Shao, Stephan Keßel, Yue Li, Keding Lu, Sihua Lu, Jonathan Williams, Yuanhang Zhang, Liming Zeng, Anke C. Nölscher, Yusheng Wu, Xuemei Wang, and Junyu Zheng
Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, https://doi.org/10.5194/acp-17-7127-2017, 2017
Short summary
Short summary
Total OH reactivity is an important parameter to evaluate understanding of atmospheric chemistry, especially the VOC contribution to air pollution. Measured by comparative reactivity methods, total OH reactivity in Beijing and Heshan revealed significant differences between measured and calculated results, such as missing reactivity, which were related to unmeasured primary or secondary species. This missing reactivity would introduce a 21–30 % underestimation for ozone production efficiency.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
J. Diab, T. Streibel, F. Cavalli, S. C. Lee, H. Saathoff, A. Mamakos, J. C. Chow, L.-W. A. Chen, J. G. Watson, O. Sippula, and R. Zimmermann
Atmos. Meas. Tech., 8, 3337–3353, https://doi.org/10.5194/amt-8-3337-2015, https://doi.org/10.5194/amt-8-3337-2015, 2015
Short summary
Short summary
This paper depicts several fields of application of a new analytical method, which expands the well-established EC/OC method, which enables one to measure the carbon content (organic and elemental) of particulate aerosols. It was coupled to photo-ionization mass spectrometry to get structural information of the evolving carbonaceous species. Application fields such as smoke chamber-, ambient - and wood combustion particles were addressed, covering exemplary primary and secondary aerosol sources.
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015, https://doi.org/10.5194/acp-15-3909-2015, 2015
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
R. Chirico, M. Clairotte, T. W. Adam, B. Giechaskiel, M. F. Heringa, M. Elsasser, G. Martini, U. Manfredi, T. Streibel, M. Sklorz, R. Zimmermann, P. F. DeCarlo, C. Astorga, U. Baltensperger, and A. S. H. Prevot
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-16591-2014, https://doi.org/10.5194/acpd-14-16591-2014, 2014
Revised manuscript has not been submitted
K. Schäfer, M. Elsasser, J. M. Arteaga-Salas, J. Gu, M. Pitz, J. Schnelle-Kreis, J. Cyrys, S. Emeis, A. S. H. Prevot, and R. Zimmermann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-2235-2014, https://doi.org/10.5194/acpd-14-2235-2014, 2014
Revised manuscript not accepted
A.C. Nölscher, E. Bourtsoukidis, B. Bonn, J. Kesselmeier, J. Lelieveld, and J. Williams
Biogeosciences, 10, 4241–4257, https://doi.org/10.5194/bg-10-4241-2013, https://doi.org/10.5194/bg-10-4241-2013, 2013
A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel, and J. Williams
Atmos. Meas. Tech., 5, 2981–2992, https://doi.org/10.5194/amt-5-2981-2012, https://doi.org/10.5194/amt-5-2981-2012, 2012
Related subject area
Aerosol Measurements & Instrumentation (AMI)
The Centrifugal Differential Mobility Analyser – concept and initial validation of a new device for measuring 2D property distributions
Validation of cantilever-enhanced photoacoustic particle-size-resolved light absorption measurement using nigrosin reference particles and Mie modelling
Comparison of size distribution and electrical particle sensor measurement methods for particle lung deposited surface area (LDSAal) in ambient measurements with varying conditions
Influence of soot aerosol properties on the counting efficiency of instruments used for the periodic technical inspection of diesel vehicles
Direct detection of polycyclic aromatic hydrocarbons on a molecular composition level in summertime ambient aerosol via proton transfer reaction mass spectrometry
Reduced particle composition dependence in condensation particle counters
Performance evaluation of a semivolatile aerosol dichotomous sampler (SADS) for exposure assessment: impact of design issues
Extended aerosol optical depth (AOD) time series analysis in an Alpine valley: a comparative study from 2007 to 2023
A multi-instrumental approach for calibrating real-time mass spectrometers using high-performance liquid chromatography and positive matrix factorization
Opinion: Should high-resolution differential mobility analyzers be used in mainstream aerosol studies?
Pushing nano-aerosol measurements towards a new decade – technical note on the Airmodus particle size magnifier 2.0
Evaluation of a Partector Pro for atmospheric particle number size distribution and number concentration measurements at an urban background site
A novel measurement system for unattended, in situ characterization of carbonaceous aerosols
Optimized procedure for the determination of alkylamines in airborne particulate matter of anthropized areas
A new working fluid for condensation particle counters for use in sensitive working environments
Torben N. Rüther, David B. Rasche, and Hans-Joachim Schmid
Aerosol Research, 3, 65–79, https://doi.org/10.5194/ar-3-65-2025, https://doi.org/10.5194/ar-3-65-2025, 2025
Short summary
Short summary
Aersols are important in many parts of industry and research. To learn more about aerosols, especially when they contain nanoparticles, the Centrifugal Differential Mobility Anlayser (CDMA) presented here allows us to measure the mobility-equivalent diameter and the Stokes equivalent diameter at the same time. The result is a 2D property distribution that provides deeper information about the entire particle collective than the isolated measurement principles.
Joel Kuula, Juho Karhu, Tommi Mikkonen, Patrick Grahn, Aki Virkkula, Hilkka Timonen, Tuomas Hieta, and Markku Vainio
Aerosol Research, 3, 1–13, https://doi.org/10.5194/ar-3-1-2025, https://doi.org/10.5194/ar-3-1-2025, 2025
Short summary
Short summary
We developed a new method to measure how particles absorb light as they change in size, which is critical for understanding their climate impact. Our approach uses a sensitive instrument that measures light absorption directly from particles in real time. By pairing this with a device that sorts particles by size, we achieved accurate size-resolved measurements. Our findings closely match theoretical models, offering a promising tool for future research into how particles influence climate.
Teemu Lepistö, Henna Lintusaari, Laura Salo, Ville Silvonen, Luis M. F. Barreira, Jussi Hoivala, Lassi Markkula, Jarkko V. Niemi, Jakub Ondracek, Kimmo Teinilä, Hanna E. Manninen, Sanna Saarikoski, Hilkka Timonen, Miikka Dal Maso, and Topi Rönkkö
Aerosol Research, 2, 271–289, https://doi.org/10.5194/ar-2-271-2024, https://doi.org/10.5194/ar-2-271-2024, 2024
Short summary
Short summary
The performances of different particle lung-deposited surface area (LDSAal) measurement methods (Partector, ELPI+, SMPS/DMPS) were compared in ambient conditions. As LDSAal is a health-relevant metric and rather easy to utilise in air quality monitoring, it is crucial to know how the different methods agree, as there are clear differences in their operation. In all, a comparison of different methods can be complicated; still, the methods agree rather well in terms of local pollution (< 400 nm).
Tobias Hammer, Diana Roos, Barouch Giechaskiel, Anastasios Melas, and Konstantina Vasilatou
Aerosol Research, 2, 261–270, https://doi.org/10.5194/ar-2-261-2024, https://doi.org/10.5194/ar-2-261-2024, 2024
Short summary
Short summary
More than 35 000 particle counters designed for the periodic technical inspection of diesel engine exhaust have been placed on the European market in the past few years. This work shows that the counting efficiency of these instruments depends on the properties of the test aerosols, even if all of them are combustion-based soot of similar mobility diameter. The aim of this study is to promote harmonisation of measurement procedures in the field of emission control.
Tobias Reinecke, Markus Leiminger, Andreas Klinger, and Markus Müller
Aerosol Research, 2, 225–233, https://doi.org/10.5194/ar-2-225-2024, https://doi.org/10.5194/ar-2-225-2024, 2024
Short summary
Short summary
Condensed particulate polycyclic aromatic hydrocarbons (PAHs) are toxic compounds that may be detrimental to human health, even at low (sub-ng m-3) long-term exposure levels. The CHARON FUSION PTR-TOF 10k is capable of directly detecting PAHs on a chemical composition level at significantly lower mass concentrations. Herein, we report the time series of nine PAHs and identify three associated major sources and physicochemical processes for summertime aerosol in Innsbruck, Austria.
Peter J. Wlasits, Joonas Enroth, Joonas Vanhanen, Aki Pajunoja, Hinrich Grothe, Paul M. Winkler, and Dominik Stolzenburg
Aerosol Research, 2, 199–206, https://doi.org/10.5194/ar-2-199-2024, https://doi.org/10.5194/ar-2-199-2024, 2024
Short summary
Short summary
We highlight that the composition dependence of the counting efficiency of condensation particle counters can be immensely reduced by choice of the working fluid. A butanol- and a propylene glycol-based version of the Airmodus A30 was calibrated using a set of four different seed particles. Our study shows that composition-dependent counting efficiencies almost vanish in the case of the propylene glycol-based CPC. Simulations of supersaturation profiles were used to explain the results.
Noredine Rekeb, Benjamin Sutter, Emmanuel Belut, Evelyne Géhin, and Raymond Olsen
Aerosol Research, 2, 183–198, https://doi.org/10.5194/ar-2-183-2024, https://doi.org/10.5194/ar-2-183-2024, 2024
Short summary
Short summary
This study addresses challenges in semivolatile organic compound (SVOC) aerosol sampling. Despite its promise, experimental evaluations of the semivolatile aerosol dichotomous sampler (SADS) reveal issues with leakiness, assembly repeatability, and significant wall losses for particles larger than 2 µm. Findings suggest the need for improvements in airtightness, nozzle alignment, and assembly repeatability for the SADS to fulfil its theoretical potential in workplace exposure assessments.
Jochen Wagner, Alma Anna Ubele, Verena Schenzinger, and Axel Kreuter
Aerosol Research, 2, 153–159, https://doi.org/10.5194/ar-2-153-2024, https://doi.org/10.5194/ar-2-153-2024, 2024
Short summary
Short summary
In this study, we explored how tiny particles in the air, known as aerosols, have changed over time in two mountainous areas in Austria and Switzerland from 2007 to 2023. By using special instruments that measure sunlight, we tracked these changes and found that the amount of aerosols has been decreasing in both locations. This is important because aerosols can affect both our health and the climate. This work is crucial for understanding air quality trends in mountain environments.
Melinda K. Schueneman, Douglas A. Day, Dongwook Kim, Pedro Campuzano-Jost, Seonsik Yun, Marla P. DeVault, Anna C. Ziola, Paul J. Ziemann, and Jose L. Jimenez
Aerosol Research, 2, 59–76, https://doi.org/10.5194/ar-2-59-2024, https://doi.org/10.5194/ar-2-59-2024, 2024
Short summary
Short summary
Our study presents a novel method for quantifying mass spectrometer responses to molecular species in organic aerosols. Traditional calibrations often fail for complex mixtures like secondary organic aerosol. We combined chromatography with statistical component analysis to improve separation and quantification, achieving promising agreement with direct calibration. Our findings offer a new approach to assess aerosol composition, especially beneficial for complex mixtures.
Juan Fernandez de la Mora
Aerosol Research, 2, 21–30, https://doi.org/10.5194/ar-2-21-2024, https://doi.org/10.5194/ar-2-21-2024, 2024
Short summary
Short summary
Differential mobility analyzers (DMAs) are widely used to measure aerosol size distributions. Here we argue that DMAs operating steadily at unusually high flow rates are not as complex as they appear and could be used with considerable advantage in many measurements currently carried out in conventional DMAs. We hope that the considerations presented will encourage DMA manufacturers to develop high-flow DMAs far more versatile yet comparable in complexity to today’s mainstream instruments.
Juha Sulo, Joonas Enroth, Aki Pajunoja, Joonas Vanhanen, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Aerosol Research, 2, 13–20, https://doi.org/10.5194/ar-2-13-2024, https://doi.org/10.5194/ar-2-13-2024, 2024
Short summary
Short summary
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
Christof Asbach, Ana Maria Todea, and Heinz Kaminski
Aerosol Research, 2, 1–12, https://doi.org/10.5194/ar-2-1-2024, https://doi.org/10.5194/ar-2-1-2024, 2024
Short summary
Short summary
The performance of the handheld Partector Pro has been evaluated against a reference mobility particle size spectrometer (MPSS) for 70 days at an urban background site. The number concentrations measured with the Partector Pro were in excellent and the number size distributions in reasonable agreement with the MPSS. The Partector Pro is thus a promising candidate for the widespread measurement of ultrafine particle concentrations as, for example, requested by WHO, at reasonable costs.
Alejandro Keller, Patrick Specht, Peter Steigmeier, and Ernest Weingartner
Aerosol Research, 1, 65–79, https://doi.org/10.5194/ar-1-65-2023, https://doi.org/10.5194/ar-1-65-2023, 2023
Short summary
Short summary
Ultra-fine airborne carbon particles affect climate and health, but measuring them poses many challenges. This paper presents an innovative device called FATCAT that enables unattended and continuous measurement of these particles over extended periods of time. We detail FATCAT's performance, demonstrate its compatibility with established methods and introduce the unique feature of fast thermograms, a novel approach to further understand real-world samples containing carbonaceous particles.
Davide Spolaor, Lidia Soldà, Gianni Formenton, Marco Roverso, Denis Badocco, Sara Bogialli, Fazel A. Monikh, and Andrea Tapparo
Aerosol Research, 1, 29–38, https://doi.org/10.5194/ar-1-29-2023, https://doi.org/10.5194/ar-1-29-2023, 2023
Short summary
Short summary
In remote environments, atmospheric amines are involved in new particle formation processes. In anthropized areas, they readily react to form secondary aerosol. These particles may have relevant environmental (climate) and health effects. Together with instrumental techniques for the on-line determination of these compounds (PTR-MS, AMS), the development of simple methods for their accurate quantification represents a scientific target aimed at by obtaining more significant environmental data.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Jannik Schmitt, Gerhard Steiner, Lothar Keck, Andreas Petzold, and Ulrich Bundke
Aerosol Research, 1, 1–12, https://doi.org/10.5194/ar-1-1-2023, https://doi.org/10.5194/ar-1-1-2023, 2023
Short summary
Short summary
The aerosol number concentration is essential information for aerosol science. A condensation particle counter (CPC) can robustly provide this information. Butanol is often used as a working fluid in a CPC. We could show that dimethyl sulfoxide (DMSO) behaves equivalently to butanol in terms of the instrument`s counting efficiency, cut-off diameter and concentration linearity. We tested this on different aerosols, including sodium chloride, ammonium sulfate and fresh combustion soot.
Cited articles
Abdillah, S. F. I. and Wang, Y. F.: Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health, https://doi.org/10.1016/j.envres.2022.115061, 1 February 2023.
Baron, P. A. and Willeke, K.: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., https://doi.org/10.1002/9781118001684, 2011.
Bayerisches Landesamt für Statistik: Statistik kommunal – Kreisfreie Stadt Bayreuth – 09462, 1–30 pp., https://statistik.bayern.de/mam/produkte/statistik_kommunal/2022/09472.pdf (last access: 15 January 2025), 2022.
Bein, K. J. and Wexler, A. S.: A high-efficiency, low-bias method for extracting particulate matter from filter and impactor substrates, Atmos. Environ., 90, 87–95, 2014.
Berner, A., Luerzer, C. H., Pohl, F., Preining, O., and Wagner, P.: The size distribution of the urban aerosol in Vienna, Sci. Total Environ., 13, 245–261, 1979.
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.: Levoglucosan as a tracer of biomass burning: Recent progress and perspectives, Atmos. Res., 220, 20–33, https://doi.org/10.1016/j.atmosres.2019.01.004, 15 May 2019.
Boskovic, L., Altman, I. S., Agranovski, I. E., Braddock, R. D., Myojo, T., and Choi, M.: Influence of particle shape on filtration processes, Aerosol Sci. Technol., 39, 1184–1190, https://doi.org/10.1080/02786820500442410, 2005.
Brink, J. A.: Cascade Impactor for Adiabatic Measurements, Ind. Eng. Chem., 50, 645–648, 1958.
Cambustion Ltd.: DMS500 fast particulate analyzer brochure, Cambridge, United Kingdom, 1–6 pp., https://www.cambustion.com/products/engine-exhaust-emissions/dms500-particulate-analyser (last access: 14 January 2025), 2019.
Canepari, S., Astolfi, M. L., Moretti, S., and Curini, R.: Comparison of extracting solutions for elemental fractionation in airborne particulate matter, Talanta, 82, 834–844, https://doi.org/10.1016/j.talanta.2010.05.068, 2010.
Caracci, E., Iannone, A., Carriera, F., Notardonato, I., Pili, S., Murru, A., Avino, P., Campagna, M., Buonanno, G., and Stabile, L.: Size-segregated content of heavy metals and polycyclic aromatic hydrocarbons in airborne particles emitted by indoor sources, Sci. Rep., 14, 20739, https://doi.org/10.1038/s41598-024-70978-3, 2024.
Chang, M., Kim, S., and Sioutas, C.: Experimental studies on particle impaction and bounce: effects of substrate design and material, Atmos. Environ., 33, 2313–2322, https://doi.org/10.1016/S1352-2310(99)00082-5, 1999.
Chen, S. C., Tsai, C. J., Chen, H. D., Huang, C. Y., and Roam, G. D.: The influence of relative humidity on nanoparticle concentration and particle mass distribution measurements by the MOUDI, Aerosol Sci. Technol., 45, 596–603, https://doi.org/10.1080/02786826.2010.551557, 2011.
Chen, X., He, T., Yang, X., Gan, Y., Qing, X., Wang, J., and Huang, Y.: Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone, J. Hazard. Mater., 452, 131245, https://doi.org/10.1016/j.jhazmat.2023.131245, 15 June 2023.
Claeys, M., Szmigielski, R., Vermeylen, R., Wang, W., Shalamzari, M. S., and Maenhaut, W.: Tracers for Biogenic Secondary Organic Aerosol from α-Pinene and Related Monoterpenes: An Overview, Springer, https://doi.org/10.1007/978-94-007-5034-0_18, 2013.
Crazzolara, C. and Held, A.: Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF), Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024, 2024.
Daher, N., Ning, Z., Cho, A. K., Shafer, M., Schauer, J. J., and Sioutas, C.: Comparison of the chemical and oxidative characteristics of particulate matter (PM) collected by different methods: Filters, impactors, and BioSamplers, Aerosol Sci. Technol., 45, 1294–1304, https://doi.org/10.1080/02786826.2011.590554, 2011.
de Souza, S. L. Q., Martins, E. M., Corrêa, S. M., da Silva, J. L., de Castro, R. R., and de Souza Assed, F.: Determination of trace elements in the nanometer, ultrafine, fine, and coarse particulate matters in an area affected by light vehicular emissions in the city of Rio de Janeiro, Environ. Monit. Assess., 193, 92, https://doi.org/10.1007/s10661-021-08891-9, 1 February 2021.
Durand, T., Bau, S., Morele, Y., Matera, V., Bémer, D., and Rousset, D.: Quantification of low pressure impactor wall deposits during ziuc nanoparticle sampling, Aerosol Air Qual. Res., 14, 1812–1821, https://doi.org/10.4209/aaqr.2013.10.0304, 2014.
Fujitani, Y., Hasegawa, S., Fushimi, A., Kondo, Y., Tanabe, K., Kobayashi, S., and Kobayashi, T.: Collection characteristics of low-pressure impactors with various impaction substrate materials, Atmos. Environ., 40, 3221–3229, https://doi.org/10.1016/j.atmosenv.2006.02.001, 2006.
Gong, W.-C., Jidenko, N., Li, Y.-R., Le, T.-C., Borra, J.-P., and Tsai, C.-J.: PM0.1 non-bouncing impactor (NBI) for ultrafine particle mass and number measurements, J. Aerosol. Sci., 174, 106249, https://doi.org/https://doi.org/10.1016/j.jaerosci.2023.106249, 2023.
Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?, Geophys. Res. Lett., 34, L14810, https://doi.org/10.1029/2007GL029987, 2007.
Guo, J., Ji, A., and Xu, Z.: On-site characteristics of airborne particles at a formal electronic waste recycling plant: size distribution and lung deposited surface area, J. Mater Cy. Waste Manag., 25, 346–358, https://doi.org/10.1007/s10163-022-01536-0, 2023.
Hata, M., Linfa, B., Otani, Y., and Furuuchi, M.: Performance evaluation of an Andersen cascade impactor with an additional stage for nanoparticle sampling, Aerosol Air Qual. Res., 12, 1041–1048, https://doi.org/10.4209/aaqr.2012.08.0204, 2012.
Held, A., Zerrath, A., McKeon, U., Fehrenbach, T., Niessner, R., Plass-Dülmer, C., Kaminski, U., Berresheim, H., and Pöschl, U.: Aerosol size distributions measured in urban, rural and high-alpine air with an electrical low pressure impactor (ELPI), Atmos. Environ., 42, 8502–8512, https://doi.org/10.1016/j.atmosenv.2008.06.015, 2008.
Hillamo, R. E. and Kauppinen, E. I.: On the performance of the berner low pressure impactor, Aerosol Sci. Technol., 14, 33–47, https://doi.org/10.1080/02786829108959469, 1991.
Huang, Z., Harrison, R. M., Allen, A. G., James, J. D., Tilling, R. M., and Yin, J.: Field intercomparison of filter pack and impactor sampling for aerosol nitrate, ammonium, and sulphate at coastal and inland sites, Atmos. Res., 71, 215–232, https://doi.org/10.1016/j.atmosres.2004.05.002, 2004.
Hussain, K., Hoque, R. R., Balachandran, S., Medhi, S., Idris, M. G., Rahman, M., and Hussain, F. L.: Monitoring and Risk Analysis of PAHs in the Environment, in: Handbook of Environmental Materials Management, Springer International Publishing, 1–35, https://doi.org/10.1007/978-3-319-58538-3_29-2, 2018.
Hu, X., Zhao, H. N., Tian, Z., Peter, K. T., Dodd, M. C., and Kolodziej, E. P.: Transformation Product Formation upon Heterogeneous Ozonation of the Tire Rubber Antioxidant 6PPD (N-(1,3-dimethylbutyl)- N′-phenyl- p-phenylenediamine), Environ. Sci. Technol. Lett., 9, 413–419, https://doi.org/10.1021/acs.estlett.2c00187, 2022.
Järvinen, A., Aitomaa, M., Rostedt, A., Keskinen, J., and Yli-Ojanperä, J.: Calibration of the new electrical low pressure impactor (ELPI+), J. Aerosol Sci., 69, 150–159, https://doi.org/10.1016/j.jaerosci.2013.12.006, 2014.
Junkermann, W. and Hacker, J.: Unprecedented levels of ultrafine particles, major sources, and the hydrological cycle, Sci. Rep., 12, 7410, https://doi.org/10.1038/s41598-022-11500-5, 2022.
Keskinen, J., Pietarinen, K., and Lehtim, M.: Electrical Low Pressure Impactor, J. Aerosol Sci, 23, 353–360, https://doi.org/10.1016/0021-8502(92)90004-F, 1992.
Kim, B., Lee, J. S., Choi, B.-S., Park, S.-Y., Yoon, J.-H., and Kim, H.: Ultrafine Particle Characteristics in a Rubber Manufacturing Factory, Ann. Occup. Hyg., 57, 728–739, https://doi.org/10.1093/annhyg/mes102, 2013a.
Kim, K. H., Jahan, S. A., Kabir, E., and Brown, R. J. C.: A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int., 66, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013b.
Klöckner, P., Seiwert, B., Wagner, S., and Reemtsma, T.: Organic Markers of Tire and Road Wear Particles in Sediments and Soils: Transformation Products of Major Antiozonants as Promising Candidates, Environ. Sci. Technol., 55, 11723–11732, https://doi.org/10.1021/acs.est.1c02723, 2021.
Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurment: Principles, Techniques, and Applications, 3rd Edn., https://doi.org/10.1002/9781118001684, 2011.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., Norford, L., and Britter, R.: Ultrafine particles in cities, Environ. Inter., 66, 1–10, https://doi.org/10.1016/j.envint.2014.01.013, 2014.
Kumar, P., Kalaiarasan, G., Porter, A. E., Pinna, A., Kłosowski, M. M., Demokritou, P., Chung, K. F., Pain, C., Arvind, D. K., Arcucci, R., Adcock, I. M., and Dilliway, C.: An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments, Sci. Total Environ., 756, 143553, https://doi.org/10.1016/j.scitotenv.2020.143553, 20 February 2021.
Kumsanlas, N., Piriyakarnsakul, S., Sok, P., Hongtieab, S., Ikemori, F., Szymanski, W. W., Hata, M., Otani, Y., and Furuuchi, M.: A cascade air sampler with multi-nozzle inertial filters for PM0.1, Aerosol Air Qual. Res., 19, 1666–1677, https://doi.org/10.4209/aaqr.2019.02.0066, 2019.
Lai, C. Y., Huang, S. H., Chang, C. P., and Lin, J. Y.: Reducing particle bounce and loading effect for a multi-hole impactor, Aerosol Sci. Technol., 42, 114–122, https://doi.org/10.1080/02786820701809045, 2008.
Liu, C.-N., Awasthi, A., Hung, Y.-H., and Tsai, C.-J.: Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors, Atmos. Environ., 69, 325–333, https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.12.003, 2013.
Maharaj Kumari, K. and Lakhani, A.: PAHs in Gas and Particulate Phases: Measurement and Control, in: Environmental Contaminants: Measurement, Modelling and Control, edited by: Gupta, T., Agarwal, A. K., Agarwal, R. A., and Labhsetwar, N. K., Springer Singapore, Singapore, 43–75, https://doi.org/10.1007/978-981-10-7332-8_3, 2018.
Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., and Samara, C.: Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk, Environ. Sci. Pollut. Res., 23, 3556–3568, https://doi.org/10.1007/s11356-015-5573-5, 2016.
Marjamäki, M., Keskinen, J., Chen, D.-R., and Pui, D. Y. H.: Perfomance Evaluation of the Electrical Low-Pressure Impactor (ELPI), J. Aerosol Sci, 31, 249–261, 2000.
Marple, V., Olson, B., Romay, F., Hudak, G., Geerts, S. M., and Lundgren, D.: Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: Design, Evaluation, and application to long-term ambient sampling, Aerosol Sci. Technol., 48, 427–433, https://doi.org/10.1080/02786826.2014.884274, 2014.
Marple, V. A. and Willeke, K.: IMPACTOR DESIGN, Pergamon Press, 891–896 pp., https://doi.org/10.1016/0004-6981(76)90144-X, 1976.
Marple, V. A., Rubow, K. L., and Behm, S. M.: A microorifice uniform deposit impactor (moudi): Description, calibration, and use, Aerosol Sci. Technol., 14, 434–436, https://doi.org/10.1080/02786829108959504, 1991.
Matthew, B. M., Middlebrook, A. M., and Onasch, T. B.: Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols, Aerosol Sci. Technol., 42, 884–898, https://doi.org/10.1080/02786820802356797, 2008.
May, K. R.: The Cascade Impactor: An Instrument for Sampling Coarse Aerosols, J. Sci. Instrum, 22, 187–195, 1945.
Mitchell, R. I. and Pilcher, J. M.: Measuring Aerosol Particle Sizes in Air pollutants, Commercial aerosols and Cigarette smoke, Indus. Eng. Chem., 51, 1039–1042, 1959.
Mühlbauer, W., Zöllner, C., Lehmann, S., Lorenz, S., and Brüggemann, D.: Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity, Combust Flame, 167, 39–51, https://doi.org/10.1016/j.combustflame.2016.02.029, 2016.
Müller, K., Spindler, G., Van Pinxteren, D., Gnauk, T., Iinuma, Y., Brüggemann, E., and Herrmann, H.: Ultrafine and fine particles in the atmosphere - Sampling, chemical characterization and sources, Chem Ing. Tech., 84, 1130–1136, https://doi.org/10.1002/cite.201100208, 2012.
Newton, G. J., Cheng, Y. S., Barr, E. B., and Yeh, H. C.: Effects of collection substrates on performance and wall losses in cascade impactors, J. Aerosol Sci., 21, 467–470, https://doi.org/10.1016/0021-8502(90)90075-9, 1990.
Ngagine, S. H., Deboudt, K., Flament, P., Choël, M., Kulinski, P., and Marteel, F.: Development and Characterization of a Time-Sequenced Cascade Impactor: Application to Transient PM2.5 Pollution Events in Urbanized and Industrialized Environments, Atmosphere (Basel), 13, 244, https://doi.org/10.3390/atmos13020244, 2022.
Ofner, J., Krüger, H.-U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch, C.: Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS, Atmos. Chem. Phys., 11, 1–15, https://doi.org/10.5194/acp-11-1-2011, 2011.
Pak, S. S., Liu, B. Y. H., and Rubow, K. L.: Effect of coating thickness on particle bounce in inertial impactors, Aerosol Sci. Technol., 16, 141–150, https://doi.org/10.1080/02786829208959544, 1992.
Pomata, D., Di Filippo, P., Riccardi, C., Buiarelli, F., Marini, F., Romani, L., Lucarelli, F., Pazzi, G., Galarini, R., and Simonetti, G.: Concentrations and co-occurrence of 101 emerging and legacy organic pollutants in the ultrafine, fine and coarse fractions of airborne particulates associated with treatment of waste from electrical and electronic equipment, Chemosphere, 338, 139443, https://doi.org/10.1016/j.chemosphere.2023.139443, 2023.
Rao, A. K. and Whitby, K. T.: Non-ideal collection characteristics of inertial impactors-i. single-stage impactors and solid particles, J. Aerosol Sci. Pergamon Press, 9, 77–86 pp., https://doi.org/10.1016/0021-8502(78)90069-1, 1978.
Romay, F. J. and García-Ruiz, E.: Design of Round-Nozzle Inertial Impactors Review with Updated Design Parameters, Aerosol Air Qual. Res., 23, 220436, https://doi.org/10.4209/aaqr.220436, 2023.
Schwarz, M., Schneider, A., Cyrys, J., Bastian, S., Breitner, S., and Peters, A.: Impact of Ambient Ultrafine Particles on Cause-Specific Mortality in Three German Cities, Am. J. Respir. Crit. Care Med., 207, 1334–1344, https://doi.org/10.1164/rccm.202209-1837oc, 2023.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Symonds, J., Collings, N., StJReavell, K., and Kittelson, D.: Evaporation of Volatile Aerosols, ETH Hönggerberg, https://doi.org/10.13140/2.1.3274.7527, 2004.
Symonds, J. P. R., Reavell, K. S. J., Olfert, J. S., Campbell, B. W., and Swift, S. J.: Diesel soot mass calculation in real-time with a differential mobility spectrometer, J. Aerosol Sci., 38, 52–68, https://doi.org/10.1016/j.jaerosci.2006.10.001, 2007.
Thongyen, T., Hata, M., Toriba, A., Ikeda, T., Koyama, H., Otani, Y., and Furuuchi, M.: Development of PM0.1 personal sampler for evaluation of personal exposure to aerosol nanoparticles, Aerosol Air Qual. Res., 15, 180–187, https://doi.org/10.4209/aaqr.2014.05.0102, 2015.
Tsai, C. J., Liu, C. N., Hung, S. M., Chen, S. C., Uang, S. N., Cheng, Y. S., and Zhou, Y.: Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces, Environ. Sci. Technol., 46, 4546–4552, https://doi.org/10.1021/es204580f, 2012.
Turner, J. R. and Hering, S. V: GREASED AND OILED SUBSTRATES AS BOUNCE-FREE IMPACTION SURFACES, J. Aerosol Sci., 18, 215–224, https://doi.org/10.1016/0021-8502(87)90057-7, 1987.
Ungeheuer, F., van Pinxteren, D., and Vogel, A. L.: Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport, Atmos. Chem. Phys., 21, 3763–3775, https://doi.org/10.5194/acp-21-3763-2021, 2021.
Vestenius, M., Hellén, H., Levula, J., Kuronen, P., Helminen, K. J., Nieminen, T., Kulmala, M., and Hakola, H.: Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest, Atmos. Chem. Phys., 14, 7883–7893, https://doi.org/10.5194/acp-14-7883-2014, 2014.
Wang, G., Huang, L., Xin Zhao, Niu, H., and Dai, Z.: Aliphatic and polycyclic aromatic hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China, Atmos. Res., 81, 54–66, https://doi.org/10.1016/j.atmosres.2005.11.004, 2006.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Wiedensohler, A., Wiesner, A., Weinhold, K., Birmili, W., Hermann, M., Merkel, M., Müller, T., Pfeifer, S., Schmidt, A., Tuch, T., Velarde, F., Quincey, P., Seeger, S., and Nowak, A.: Mobility particle size spectrometers: Calibration procedures and measurement uncertainties, Aerosol Sci. Technol., 52, 146–164, https://doi.org/10.1080/02786826.2017.1387229, 2018.
Won Kim, S.: Critical Review on Evaporative Loss of Semivolatile Aerosols during Sampling, J. Env. Hlth. Sci., 36, 171–181, https://doi.org/10.5668/JEHS.2010.36.3.171, 2010.
Xie, M., Hannigan, M. P., and Barsanti, K. C.: Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver, Environ. Sci. Technol., 48, 2835–2842, https://doi.org/10.1021/es405356n, 2014.
Yao, Y., Ye, X., Gao, T., Feng, H., Chen, Y., and Chen, J.: Significant impactor sampling artifacts of ammonium, nitrate, and organic acids, Atmos. Environ., 274, 118985, https://doi.org/10.1016/j.atmosenv.2022.118985, 2022.
Young, L. H., Lin, Y. H., Lin, T. H., Tsai, P. J., Wang, Y. F., Hung, S. M., Tsai, C. J., and Chen, C. W.: Field application of a newly developed personal nanoparticle sampler to selected metalworking operations, Aerosol Air Qual. Res., 13, 849–861, https://doi.org/10.4209/aaqr.2012.10.0270, 2013a.
Young, L. H., Lin, Y. H., Lin, T. H., Tsai, P. J., Wang, Y. F., Hung, S. M., Tsai, C. J., and Chen, C. W.: Field application of a newly developed personal nanoparticle sampler to selected metalworking operations, Aerosol Air Qual. Res., 13, 849–861, https://doi.org/10.4209/aaqr.2012.10.0270, 2013b.
Zhao, Z., Hao, J., Li, J., and Wu, S.: Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol, J. Environ. Sci., 20, 1183–1188, https://doi.org/10.1016/S1001-0742(08)62207-X, 2008.
Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Zhang, Z.-S., and Tao, J.: Biomass burning tracers in rural and urban ultrafine particles in Xi'an, China, Atmos. Pollut. Res., 8, 614–618, https://doi.org/10.1016/j.apr.2016.12.011, 2017.
Short summary
We assessed the performance of four cascade impactors for collecting and analyzing organic markers in airborne ultrafine particles (UFPs) under lab and field conditions. The cutoff was influenced by the impactor design and aerosol mixture. Two key factors caused variations in mass concentrations: the evaporation of semi-volatile compounds and the "bounce-off" of larger particles and fragments. Our findings reveal the challenges of analyzing organic marker mass concentrations in airborne UFPs.
We assessed the performance of four cascade impactors for collecting and analyzing organic...
Altmetrics
Final-revised paper
Preprint